STRUCTURE AND DETAILED SYLLABUS UNDERGRADUATE COURSE (B.SC.) IN GEOLOGY LEARNING OUTCOME BASED CURRICULUM (UNDER CBCS) FOR AFFILIATED COLLEGES MANONMANIAM SUNDARANAR UNIVERSITY

COMMON COURSE STRUCTURE FOR B.Sc., GEOLOGY – 2021-2022

MANONMANIAM SUNDARANAR UNIVERSITY

TIRUNELVELI- 627012

2021

MANONMANIAM SUNDARANAR UNIVERSITY, TIRUNELVELI UG - COURSES – AFFILIATED COLLEGES Course Structure for B.Sc. Geology Learning Outcome based Curriculum (Choice Based Credit System) (with effect from the academic year 2021- 22 onwards)

Vision of the University

To provide quality education to reach the un-reached

Mission of the University

- To conduct research, teaching and outreach programmes to improve conditions of human living.
- To create an academic environment that honors women and men of all races, caste, creed, cultures and an atmosphere that values intellectual curiosity, pursuit of knowledge, academic freedom and integrity.
- To offer a wide variety of off-campus educational and training programs, including the use of information technology, to individuals and groups.
- To develop partnership with industries and government so as to improve the quality of the workplace and to serve as catalyst for economic and cultural development.
- To provide quality / inclusive education, especially for the rural and un-reached segments of economically downtrodden students including women, socially oppressed and differently abled.

1. Name of the Programme :B.Sc Geology

2. Preamble of the Programme

As a geologist, you will study the Earth, learning about the rocks, minerals, fossils and fluids of which it is composed, the physical and chemical processes that drive the evolution and structure of its interior, the oceans, atmosphere and biosphere that sculpt and alter its surface, and the other planets, moons and asteroids to which it is closely related. Geologists seek to understand the Earth and other planets through observation and experiment, and to build their understanding upon fundamental scientific principles using interdisciplinary skills in physics, chemistry, biology, mathematics, computing and engineering.

Candidates for admission to the B.Sc., Degree (Geology) Course shall be required to pass the final examination of the Higher Secondary Course (10+2 level) and equivalent there to with a minimum marks under an academic stream (any Science group) or a course of studies recognized and approved by the syndicate of the Manonmaniam Sundaranar University, Tirunelveli.

	3. Programme Structure										
Semester	Course Code	Course	Course Nature	Cred its	Contact Hours per Week	Continuous Internal Assessment (CIA)	End Semester Exam (ESE)				
		Tamil/Other Languages	Language	4	6	25	75				
		Communicative English-I	Language	4	6	25	75				
		PhysicalGeology	Core-Theory-1	4	4	25	75				
1		ProfessionalEnglishfor Physical Sciences-I	Core-Theory- 2	4	4	25	75				
		Practical-PhysicalGeology	Major Practical-I	2	2	50	50				
		Chemistry	Allied-I	3	4	25	75				
		Practical-Chemistry	AlliedPractical- I	2	2	50	50				
		EnvironmentalStudies	Common	2	2	25	75				
				25	30						
		Tamil/Other Languages	Language	4	6	25	75				
		Communicative English-II	Language	4	6	25	75				
		StructuralGeology	Core- Theory-3	4	4	25	75				
2		ProfessionalEnglish for Physical sciences-II	Core- Theory-4	4	4	25	75				
		Practical- StructuralGeology	MajorPractical -II	2	2	50	50				
		Chemistry	Allied-II	3	4	25	75				
		Practical-Chemistry	AlliedPractical- II	2	2	50	50				
		Valuebasededucation/Socia IHarmony	Common	2	2	25	75				
				25	30						
		Tamil/Other Languages	Language	4	6	25	75				
		English	Language	4	6	25	75				
		Crystallographyand Mineralogy	Core- Theory-5	4	4	25	75				
		Practical–Crystallography &Mineralogy	Major Practical-III	2	2	50	50				
		Physics	Allied-III	3	4	25	75				
3		Practical-Physics	AlliedPractical- III	2	2	50	50				
		Remote sensing andGISorGemmology	Skill based – 1	4	4	25	75				
		Climatologyor FundamentalsofGeology	Non-Major Elective-I	2	2	25	75				
		*Yoga	Common	2	2	25	75				
		(yoga 2 hours work in	extra hours)	27	32						

	Tamil/Other Languages	Language	4	6	25	75
	English	Language	4	6	25	75
	Palaeontology	Core-Theory-6	4	4	25	75
	Practical–Palaeontology	Major Practical-IV	2	2	50	50
	Physics	Allied-IV	3	4	25	75
4	Practical-Physics	AlliedPractical- IV	2	2	50	50
	StratigraphyorGeostatisti csandComputerApplicati ons	Skill based –2	4	4	25	75
	GeohydrologyorMineralE conomics	Non-major Elective-II	2	2	25	75
	ComputersforDigitalEra	Common	2	2	25	75
	Part V	ExtensionActiv ity	1		25	75
			28	32		
	IgneousPetrology	Core-Theory-7	4	5	25	75
	Sedimentaryand MetamorphicPetrology	Core-Theory- 8	4	5	25	75
	Hydrogeology	Core-Theory-9	4	4	25	75
	Marine Geologyor Fuel Geology or EnvironmentalGeol ogy	MajorElective- 1	4 4		25	75
5	Practical- IgneousPetrology	Major Practical-V	2	2	50	50
	Practical-Sedimentaryand MetamorphicPetrology	Major Practical-VI	2	4	50	50
	Practical-Hydrogeology andElective-1	Major Practical-VII	2	4	50	50
	Personality Development	Skillbased Common	2	2	25	75
			24	30		
	EconomicGeology	Core-Theory- 10	4	6	25	75
	Geochemistryand Geophysics	Core-Theory- 1	4	6	25	75
	GeologyofTamilnadu	Core- Theory-12	4	6	25	75
6	Geotechnicalstudiesor Natural Hazards orMedical Geology	Elective-2	4	4	25	75
	Practical - EconomicGeology,Geoch emistryandGeophysics	Major Practical-VIII	2	4	50	50
	Practical - Geology ofTamilnaduandElective- 2	MajorPractical -IX	2	4	50	50

	Geological Field Studies and VIVAVOCE	MajorPractical -X	2	0	50	50
			22	30		
	Grand Total		151	184		

4. Scheme of Evaluation

4.(a) CIA

- i. Theory Course: 25 Marks
- ii. Practical* : 50 Marks
- iii. Project : No internal
- iv. Internship* :----
- v. Field visit* : No internal

(At least one Seminar presentation in a semester and a minimum of one Assignment in each unit by a student)

4. (b)ESE

- i. Theory Course: 75 Marks
- ii. Practical* : 50 Marks
- iii. Project : 100 Marks
- iv. Internship* :---
- v. Field visit* : 100 Marks

4.(c) Model End Semester Question Paper*

SECTION	TYPE OF QUESTION	MARKS
Part A	Multiple Choice Questions (Two questions from each Unit)	1 x 10 = 10 marks
Part B	Internal Choice Questions (One Question from each Unit)	5 x 5 = 25 marks
Part C	Internal Choice Questions (One Question from each Unit)	5 x 8 = 40 marks
	Total	75 Marks

5. (d) Passing Minimum

CIA – No passing minimum (3 Internal Tests – Average of the best 2 will be considered)

ESE – 50%

Cumulative Aggregate – 50%

6. PROGRAMME OUTCOMES (POs) :

PO 1	The syllabus is based on an integrated curriculum with an approach to
	provide learning through problem solving and hands on training techniques.
PO 2	At the end of three years of B. Sc. Geology course students would gain
PU 2	through understanding in the fundamental concepts of geological sciences.
PO 3	Providing Quality Higher Education and taking care of intellectual, social,
PU 3	economic, emotional needs of students.
	Program aims to develop intellectual ability and geological skills through an
PO 4	appropriate blending of theoretical subject education, practical exercises and
	field training.
PO 5	To provide basic degree required to appear for job selections in various
	services as recruited by UPSC, State and Central Government organisations.
PO 6	To train students to take up the technical assistant functions at various
FUB	geological organisations like Survey of India, Oil and Natural Gas Commission,
	Geological Survey of India etc.
PO 7	To motivate students to take up higher studies and ultimately research in
	different sub disciplines of the subject in India and abroad.
PO 8	To develop appropriate skills in the students to make them competent
PUO	to take up solf employment in innegative geology related fields
	to take up self-employment in innovative geology related fields.

7. PROGRAMME SPECIFIC OUTCOMES (PSOs) :

PSO1	The student gains insight into both theory with practical observation.
PSO 2	The gains knowledge with respect to understanding the essentials of the dynamics of earth.
PSO 3	Study our Earth's past to forecast and safeguard its future.
PSO 4	Develop a deep understanding of the many processes that shape the Earth and life onlt.
PSO 5	learn how these processes interact and depend on each other.
PSO 6	This expertise may be used in field geology and laboratory studies of minerals, principles of Stratigraphy and Indian Geology, mineral exploration, oil exploration and textonics.
	exploration, and tectonics.
PSO 7	Collaborative learning is encouraged during the field training programmes and educational tours.
PSO 8	Use compasses, survey instruments, in geological investigations.

8. PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

PEO 1	Imparting geological knowledge and skills to gain employment in Industry,							
	Science and research organizations and service sectors.							
PEO 2	Produce quality manpower in geology that can elevate and lead the organization effectively.							
PFO 3	Enable the students to understand and bring solutions to societal problems related to Geology.							

PEO 4	Motivate students to pursue higher studies and research in Geology.
PEO 5	Create an environment to auger entrepreneurial skills that will innovate and
	market geology related products.

9. PEO / PO Mapping

PROGRAMME	PROGRAMME OUTCOMES									
EDUCATIONAL	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8		
OBJECTIVES										
1	Х	Х	Х	Х			Х	Х		
2						Х	Х	Х		
3	Х		Х	Х	Х					
4	Х			Х	Х	Х	Х	Х		
5	Х		Х			Х	Х	Х		

		10. MA	PPING OF COURSE OUTCOM	IES W	ITH PI	ROGR	AMM	E OU	TCON	/IES	
year	Sem	Subject Status	SubjectTitle	PO 1	РО 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8
		Core-Theory-1	PhysicalGeology	Х	Х	Х	Х	Х	Х		Х
	1 sem	Major Practical-I	Practical-PhysicalGeology	х	х	х	х	Х	х	Х	Х
I year	2	Core- Theory-3	StructuralGeology	x	x	х	x	x	x		x
	sem		Practical- StructuralGeology	Х	Х	Х	Х			Х	Х
	3 sem	Core- Theory-5	Crystallographyand Mineralogy	x	x	x	x		x	x	x
		Major Practical-III	Practical–Crystallography &Mineralogy	x	x	x	х	x		x	x
II year		Skill based – Core I	Remote sensing andGISorGemmology	x	x	х	x	x		x	x
	4 Sem	Core-Theory-5	Palaeontology	х	Х	Х	х	х	х		Х
	Scill	Major Practical-IV	Practical–Palaeontology	x	x	x	x	x	х	x	x
		Skill based Core II	StratigraphyorGeostatistic sandComputerApplication s	x	x	x	x	x	x		x
		Non-major Elective-II	GeohydrologyorMineral Economics	x	x		x			x	x
		Core- Theory-6	IgneousPetrology	Х	Х	Х	Х	Х	Х	Х	Х
		Core- Theory-7	Sedimentaryand MetamorphicPetrology	x	х	х		x		х	х

	1	1	1	r	r	r		1			·
		Core- Theory-8	Hydrogeology	x	x	x	x	x		x	х
3 year	5 sem	MajorElective- 1	Marine GeologyorFuel Geologyor EnvironmentalGeology	x	x	х	x	x	х		Х
		Major Practical-V	Practical-IgneousPetrology	х	х	х	х	x	х	х	х
		Major Practical-VI	Practical-Sedimentaryand MetamorphicPetrology	x	x	x	x	x	x		x
											х
		MajorPractical -VII	Practical-Hydrogeology andElective-1	x	x	x	x			х	
		Core-Theory-9	EconomicGeology	x	x	x	x	x	x	x	x
		Core- Theory-10	Geochemistry and Geophysics	х	х	х		х		х	х
	6 sem	Core- Theory-11	GeologyofTamilnadu	x	x	х	x	x		x	x
		Elective-2	Geotechnicalstudiesor Natural Hazards orMedical Geology	x	x		x	x	x		x
		MajorPractical -VIII	Practical - EconomicGeology ,GeochemistryandGeo physics	x	x	x	x	x	x	x	x
		MajorPractical -IX	Practical - Geology ofTamilnaduandElective-2	x	x	x	x	x	x	х	x
		MajorPractical- X	Geological Field Studies and VIVAVOCE	Х	Х	Х	Х	Х	Х	Х	Х

MANDATORYREQUIREMENTSOFB.Sc GEOLOGY PROGRAMME

Students should have to complete two daysshort field trips, as per the decision by Professor in- charge during I and IInd year B.Sc. Geology. Report of this two days short field trip should besubmitted by individuals at the end of the IIIrdyear practical examination and there will be a viva-voce on it. Geological specimens collected during their field trips to be displaced during VIVA VOCE.

Geological mapping of nearby area chosen by professor-in-charge should be held during II year, not more than one week. The reports of the geological mapping will be submitted at the end of IIIrd year course during viva-voce.

A Geological, long field trip not more than two weeks in IIIrd years will be conducted. The geological field report and specimen collected during field trip to be submitted during VIth semester practical examination and their will a viva-voce on it.

PHYSICALGEOLOGY

Course Code:

Course Objectives:

- To obtain basic knowledge about various branches of Geology and Earth's origin.
- To

layeredstructure, composition, endogenicand exogenic processes and its resultant p hysiographic features.

Course Outcomes* (COs):

After completion of this course, students will be able to

- **CO1:** Rememberthe basics of fundamental sciences
- **CO2:** Understand theorigin and evolution of earth
- **CO3:** Apply the interior of the earth concept in plate tectonics
- **CO4:** Analysis the various types of landforms based on origin and characteristic features
- **CO5:** Evaluate the weathering process and its relation to soil and rock formation.
- **CO6:** Create models of landforms studied during the course.

Course Outline:

Unit I: Contact Hours: 12 Unit II: Contact Hours: 12 Unit III:Contact Hours: 12 Unit IV:Contact Hours: 12 Unit V: Contact Hours: 12

UNITI

Definition and branches of Geology - History of Geology: catastrophism, uniformitarianism-magnitude of Geologic Time- Earth as a System- Earth's spheres: Hydrosphere, Atmosphere, Biosphere, Geosphere- Earth System Science- *Solar system*: its components- a brief accountof various theories regarding the origin of earth. *Interior of the Earth*: an outline of thecomposition and constitution of the interior of the earth: relative datingandabsolute dating – radiometric dating: Potassium – Argon, Rubidium – Strontium, Uranium, Lead-Lead, Fission track datingand Carbondatingmethod.

UNITII

Rockweathering: Geology and weathering-agents of weathering, processes of weatheringmechanical weathering: Frostwedging, frost heaving, salt action and sheeting, chemical wea thering: solution, hydration, hydrolysis, oxidation/reduction, carbonation and chelation. Bi

L	Т	Ρ	С
4	0	0	4

learn

oticweathering:biophysicaland biochemical.Mixedprocesses: spheroidal,exfoliationanddifferential weathering. Soil–definition, types and formation process of soils- Soil Horizon*WindasaGeologicalAgent*:erosionalmethods:deflation,corrosionanditsimpact.E rosionalfeatures-

Byabrasion:undercuthills,caverock,mushroomrock,mesa,yardang,ventifacts.ByDeflation:desertpavement,deflationhallows.Transportation-

saltation, suspension and traction. Deposition-causes and types, pile and sheets depositsdune formation, migration and different forms. Desert: description, kinds and

desertfeatures:plains,bajadas andpediment.

UNITIII

Work Glaciers: Types of glaciers: cirque, valley, piedmonts and continental glaciers-Glacialmovement-erosionalprocesses-erosionalfeatures-

depositionalfeatures. *Workofseaandits deposits*: waves, breakers, rip-current, longshore current. Processes of erosion, erosionalfeatures: wave cut terraces, sea cave and arch, headland, stacks, transportation and various depositional features: beaches and barriers, spits and bars, deltas, wave-built terraces. Oceandeposits: shallow waterand deep-water deposits.

UNITIV

Development of drainage system and work of stream: channel characteristics- stream erosioncharacteristics, types of streams, drainage patterns, Erosional features- valleys, river piracy, waterfalls, cascade, water gaps, pot holes and plunge pools, river terraces, meanders, ox-

bowlakes, pediments and peneplains, transportation methods, causes of stream deposition, depositional features-

deltas,pointbars,naturallevees,alluvialfans,floodplain,backswamps, and braided rivers. Types of streams and drainage patterns. *Work of Ground water*:movement of ground water due to gravity and pressure difference- ground water discharge-springs, wells and artesian wells and springs, thermal springs. Erosion by ground water anderosional features. Transportation by ground water, deposition by ground water and forms ofdeposits.

UNITV

Plate tectonics – Historical background – theory - Characteristics of plates –Worldplates -plate movements – Plate boundaries: divergent: mid-oceanic ridges,continental rift, triplejunction, geological characters; convergent: ocean – ocean,ocean – continent, continent –continent convergence, geological characters andtransform fault boundary- causes for theplate movement.Volcanoes:classification:basedonstateofthevolcano,structure

ofvolcano,kindofmaterialerupted,eruptiveforceandlocationofvolcano.Productsofvolcan o: Gases, liquids, and solids. *Earthquake*- Definition - causes- classification-seismicwaves:Bodywavesandsurfacewaves-earthquakedetectionandmeasurement-determination of epicenter – scale of earthquake: intensity and magnitude scale-effects ofearthquakes– Tsunami-causes and effects.

	Course Outcome	РО	Correlation	PSO	Correlation	Cognitive
		Addressed	Level	Addressed	Level	Level
		PO1 to	L/M/H	PSO1 to	L/ M/ H	K ₁ to K ₆
		PO8		PSO8		
CO1	Remember the basics of	PO1	Н	PSO2,	н	1/1
	fundamental sciences	101	п	PSO3	п	K1
CO2	Understand origin and	PO1,	Н	PSO1,	н	К2
	evolution of earth	PO3	п	PSO4	п	ΝZ
CO3	Apply the interior of the earth	PO4,	М	PSO5,	М	КЗ
	concept in plate tectonics	PO6,	111	PSO6	111	
CO4	Analysis the various types of	PO3,		PSO5,		
	landforms based on origin	PO5	М	PSO7	М	K4
	and characteristic features	105		1307		
CO5	Evaluate the weathering	PO7,		PSO7,		
	process and its relation to soil	PO7, PO8	Н	PSO6	Н	K5
	and rock formation.	гUo		r 300		
CO6	Create models of landforms	РОЗ,	Н	PSO8	н	К6
	studied during the course.	PO8		F 300	11	NU

Mapping of Cos to POs and PSOs

(L – Low, M – Medium, H – High; K_1 – Remember, K_2 – Understand, K_3 – Apply,

K₄ – Analyze, K₅–Evaluate, K₆ – Create)

TEXTANDREFERNCEBOOKS

- 1. Radhakrishnan, V., (1996). General Geology V.V.P. Publishers, Tuticorin.
- 2. ArthurHolmes(1992)PrinciplesofPhysicalGeology:ThomasNelson&sonsLondon.
- Charles C. Plummer, Diane H. Carlson and Lisa Hammersley (2019).
 'Physical Geology'(16thEd).McGraw-Hill Education.
- 4. StrahlerA.M(1965).IntroductiontoPhysicalGeology.,Wiley.
- 5. Thornbury.W.D(1969).PrinciplesofGeomorphology.,Wiley,NewYork.
- 6. SavindraSingh(1998).Geomorphology.PublishedbyPrayagPustakBhavan,Allahabad.
- 7. Robert S. Anderson, Suzanne P. Anderson (2010). Geomorphology. Cambridge UniversityPress.
- 8. RoCharlton(2007)FundamentalsofFluvialGeomorphology.,Routledge,Canada.

- 9. RichardJohnHuggett(2017)FundamentalsofGeomorphology.,Routledge,Canada.
- Kenneth J. Gregory (2010) The Earth's Land Surface: Landforms and Processes inGeomorphology.,SAGEPublicationsLtd.
- 11. Bloom.A.L.(1992), Surface of the Earth, Prentice HallIndia, New Delhi
- 12. Gass, I.G., Smith, P.S & Wilson, R.C.L., 2ndEdt., (1972), Understanding the Earth, The EnglishLanguage Books Society,London
- 13. Leopold,L.S, Wolman, K & Miller, J.P, (1970), Fluvial processes in Geomorphology, EurasiaPublishingHousePvtLtd.,NewDelhi.
- 14. Robert, S.A. and Suzanne, P.A., (2010) Geomorphology The mechanics and chemistry oflandscapes. CambridgeUniversityPress.
- 15. Routledge N. Y. Ritter, D.F., Kochel, R.C., Miller, J.R., (2002) Process Geomorphology, Wavelandpress.

MAJORPRACTICAL-1PHYSICALGEOLOGY

Course Code: Course Outcomes* (COs):

After completion of this course, students will be able to

- **CO1:** Remember the basics of fundamental sciences formula
- **CO2:** Understand physical parameter of the earth calculations
- **CO3:** Apply the basic science calculation to identify earth features
- **CO4:** Analysis the various types of landforms based known values
- **CO5:** Evaluate the geomorphologic features and its relation to soil and rock formation.
- **CO6:** Create models of landforms studied during the course.

Course Outline:

- InterioroftheEarth andSeismicwaves
- Rock density
- Relativeandabsoluteagedetermination
- Rockweathering
- Riveractivityand slopecalculations, slopestability
- Groundwater
- Seawave activity
- PlateTectonics –rateofmovement
- volcanism
- Earthquake-locatingepicenter

Mapping of Cos to POs and PSOs

	COURSE OUTCOME	PO ADDRESSED	CORRELATION LEVEL	PSO ADDRESSED	CORRELATION LEVEL	COGNITIVE LEVEL
		PO1 to PO8	L/M/H	PSO1 to PSO8	L/ M/ H	K ₁ to K ₆
CO1	Remember the basics of fundamental sciences formula	PO1	Н	PSO1, PSO3	Н	K1
CO2	Understand physical parameter of the earth calculations	PO2	Н	PSO2, PSO4	Н	K2
CO3	Apply the basic science calculation to identify earth features	PO4, PO5,	М	PSO5	М	К3
CO4	Analysis the various types of landforms based known values	PO3, PO5	М	PSO5, PSO7	М	К4
CO5	Evaluate the geomorphologic features and its relation to soil and rock formation.	PO7, PO8	Н	PSO7, PSO6	Н	К5
CO6	Create models of landforms studied during the course.	PO3, PO8	Н	PSO8	Н	K6

(L – Low, M – Medium, H – High; K₁ – Remember, K₂ – Understand, K₃ – Apply, K₄ – Analyze, K₅–Evaluate, K₆ – Create)

STRUCTURALGEOLOGY

L	Т	Р	С
0	0	2	2

Course Code:

Course	Obi	ectives:

L	Т	Ρ	С
4	0	0	4

- To understandthe basic concepts of stress, strain and deformation.
- To acquaint with the primary structures of rocks andFolds,Faults,Joints and Unconformity.

Course Outcomes* (COs):

After completion of this course, students will be able to

- **CO1:** Remember the earth's surface and the structures it features
- **CO2:** Understand various types of forces involved in deformation of rocks and describe attitude of structures
- **CO3:** Apply the basic concepts to distinguish the types of deformational structures
- **CO4:** Analyse deformational structures produced by various deformational processes
- CO5: Evaluate the regional tectonic and deformation processes
- **CO6:** Create tectonic maps of a region based on studies and understanding

Course Outline:

Unit I: Contact Hours: 12 Unit II: Contact Hours: 12 Unit III:Contact Hours: 12 Unit IV:Contact Hours: 12 Unit V: Contact Hours: 12

UNITI

Introductiontostructuralgeology-pioneersofstructuralgeology-

scopeandaimofStructural Geology –Methods of representing physiographic features:graphical method,topographic map, contours and its characters and Geological maps. Beds and their attitudes:Dipandstrike andits importance-Relationbetweentrue and apparentdips.

Widthofoutcrops, Truethickness, vertical thickness and their mutual relations. Measureme nttechniques of dip and strike using clinometer and Brunton compass.

UNITII

Physical properties of rocks: deformation, forces causing deformation: Compressional force, Tensional force, andShearing force.Types of deformation: brittle, plastic and elastic –factorsaffectingrockdeformation.*GeologicalFieldwork*:BasicsofFieldGeology-PlanningforFieldwork:Objectives,Preparation-FieldEquipment's-FieldSafetyMeasures. -Recognition of Rocks -Measurements of Structural: Features, Locating Your Position-

measuring dip and strike, , Plotting Attitude of Beds -Specimen collection - Field Sketchesand Photographs - Documentation of Field Observations. Erosional structures: Inlier andOutlier,Klippeand Fenster, Synclinalhill and Anticlinal valley.

UNITIII

Fold – Definition and elements of fold - Classification of folds-causes and mechanism offolding: tectonic and non-tectonic, criteria for recognition of folds- importance of folds, definition, types. *Fault*: Definition – importance of faults - elements of faults - classificationof faults:mechanism andgenetic - causes of faults - criteria for reorganization of fault, Importance of fault, Fault zoneterminology.

UNITIV

Joint: Definition, Jointsystem, element and classification: genetic and geometric-

mechanism and causes of joints. Criteria for reorganization of joints - importance of joints.*Unconformity*:definition-classification- recognition of unconformity-significance.

UNITV

Cleavage and Schistosity:– Types and origin of rock cleavages, Types of rock cleavage, cracks and fissures. *Lineation* – Kinds and Origin of lineation-Tectonic significance of lineation.

	COURSE OUTCOME	PO ADDRESSED	CORRELATION LEVEL	PSO ADDRESSED	CORRELATION LEVEL	COGNITIVE LEVEL
		PO1 to PO8	L/M/H	PSO1 to PSO8	L/ M/ H	K ₁ to K ₆
CO1	Remember the earth's surface and the structures it features	PO1	н	PSO1, PSO3	Н	K1
CO2	Understand various types of forces involved in deformation of rocks and describe attitude of structures	PO2	Н	PSO2, PSO4	Н	К2
CO3	Apply the basic concepts to distinguish the types of deformational structures	PO4, PO6,	М	PSO5, PSO6	М	К3
CO4	Analysedeformational structures produced by various deformational processes	PO3, PO5	М	PSO6, PSO7	М	К4
CO5	Evaluate the regional tectonic and deformation	PO7, PO8	Н	PSO7, PSO6	Н	К5

Mapping of Cos to POs and PSOs

	processes					
CO6	Create tectonic maps of					
	a region based on	PO3, PO8	н	PSO8	н	К6
	studies and	r03, r0o	п	F300	п	KU
	understanding					

(L – Low, M – Medium, H – High; K_1 – Remember, K_2 – Understand, K_3 – Apply, K_4 – Analyze, K_5 –Evaluate, K_6 – Create)

TEXTANDREFERNCEBOOKS

- 1. BillingsM.P (1974).StructuralGeology, PrenticeHallNew Delhi.
- 2. Ragan, D.M., (2000). Structural Geology-An Introduction to Geometrical Techniques. Wiley. New York.
- 3. Hobbs, B.E, Means, W.D & William , P.F (1976) . An outline of structural geology, JohnWiley, Newyork.
- 4. DeSitter, L.U. (1956). Structural geology, McGrawHill, NewYork
- 5. Gosh,S.K.(1993).Structural Geologyfundamentals and modern developments.
- 6. Compton, R.R. (1985). Geologyin the Field, John Wiley&SonsInc., NewDelhi.
- Sathya Narayanaswami, B.S. (1994). Structural Geology. Dhanpat Rai & Sons. NewDelhi.
- 8. Gokhale, N.W. (1995), Theoryof Structural Geology, CBS, Delhi.
- 9. Hills, E.S. (1963). Elements of Structural Geology, Chapman & Hall. London.
- 10. Park, P.G. (1983). Foundations of Structural Geology, Blackie, London.

ONLINEOPENRESOURCES

- Structural Geology & Map Interpretation<u>https://ocw.tudelft.nl/courses/structural-geology-mapinterpretation/</u>
- 2. Geological Structures: a Practical

Introduction<a>https://open.umn.edu/opentextbooks/textbooks/899

MAJORPRACTICAL-2 STRUCTURALGEOLOGY

Course Code:

Course Objectives:

- To understand the concepts of contours
- To interpret the Geological maps

Course Outcomes* (COs):

After completion of this course, students will be able to

- **CO1:** Remember the basic trigonometric calculations
- **CO2:** Understand the dip and strike and outcrops patterns
- **CO3:** Apply the concepts of contour
- **CO4:** Analyse the 3-point problems
- **CO5:** Evaluate structural features using contour
- **CO6:** Create and prepare geological map of a region.

Course Outline:

- Contourmapsandtheirinterpretation.
- StructuralProblems– problemsrelatingtotruedipandapparentdip;Determinationofverticalandtruethickne ss.
- InterpretationofGeologicalmaps:tracingtheorebody,3pointproblem,fold,fault,unconformityand drawingprofile section.

Mapping of Cos to POs and PSOs

	COURSE OUTCOME	PO ADDRESSED	CORRELATION LEVEL	PSO ADDRESSED	CORRELATION LEVEL	COGNITIVE LEVEL
		PO1 to PO8	L/M/H	PSO1 to PSO8	L/ M/ H	K ₁ to K ₆
CO1	Remember the basic trigonometric calculations	PO1	н	PSO1, PSO3	Н	K1
CO2	Understand the dip and strike and outcrops patterns	PO1,PO2	н	PSO2, PSO4	Н	К2
CO3	Apply the concepts of contour	PO3, ,	М	PSO4, PSO6	М	КЗ
CO4	Analyse the 3point problems	PO4, PO5	М	PSO5, PSO7	М	К4
CO5	Evaluate structural features using contour	PO7, PO8	Н	PSO7, PSO6	Н	К5
CO6	Create and	PO3, PO8	Н	PSO8	Н	К6

L	Т	Ρ	С
0	0	2	2

prepare geological			
map of a region.			

(L – Low, M – Medium, H – High; K_1 – Remember, K_2 – Understand, K_3 – Apply, K_4 – Analyze, K_5 –Evaluate, K_6 – Create)

CRYSTALLOGRAPHYANDMINERALOGY

Course Code:

Course Objectives:

- To know about the nature, forms, habit, symmetry elements, and twins in crystals. The classification of crystals into system and classes.
- To learn about the physical and optical properties ofrockforming minerals ofortho, ring, sheet, chain and frameworksilicates.

Course Outcomes* (COs):

After completion of this course, students will be able to

- **CO1:** Remember the basic various physical properties, optical properties.
- **CO2:** Understand the crystal parameters in minerals and crystal models
- **CO3:** Applythe understanding of physical, optical and other properties to determine the different groups and crystal systems.
- **CO4:** Analyse industrial applications and economic importance of various minerals.
- **CO5:** Evaluateminerals on the basis of the different properties and estimate a few physical properties like hardness and specific gravity of minerals
- **CO6:** Create models of crystals and mineral structures.

Course Outline:

Unit I: Contact Hours: 12 Unit II: Contact Hours: 12 Unit III:Contact Hours: 12 Unit IV:Contact Hours: 12 Unit V: Contact Hours: 12

UNITI

Definition for crystal – Morphological characters of crystals – Faces – Forms – Edge, Solidangle – Interfacial angle – Uses of Contact Goniometer. Law of constancy of the Interfacialangles, Symmetry elements, crystallographic axes – Miller indices – Law of rational indices.DefinitionofHolohedral,Hemimorphic, EnantiomorphicandHemihedral.

UNITII

 $\label{eq:crystalSystems:Classification of CrystalSystems-Classification of Crystals into 7 Systems.$

Morphological study of seven crystallographic systems with special reference to the elements of symmetry of their normal class. Cubic system – Normal (Galenatype)-Tetragonal system –

L	Т	Ρ	С
4	0	0	4

Zircon type - Hexagonal system – Beryl type - Trigonal system - Calcitetype - Orthorhombic system – Barytes type - Monoclinic system – Gypsum type -Triclinicsystem – Axinite type.Twinningin crystalsand its types.

UNITIII

Mineralogy: Definition, Characters and Uses -Physical Properties of Minerals: Colour, streak, lustre, hardness, habit, cleavage, fracture, Odour, fluorescence and Phosphorescence, feel, tenacity specific gravity, magnetism. Chemistry of minerals: general principals of chemical properties of minerals: atom, ions, molecules, atomic number, mass number, valence, ionicradii – bonding in minerals – atomic substitution and solid solution - Isomorphism, polymorphism and pseudomorphism. Classification of minerals: Classification Schemes, Chemical Classification of Minerals, Structural Classification of Silicates.

UNITIV

Rock Forming Minerals Group: Physical properties, chemical composition, classification, diagnostic properties and mode of occurrence of the following groups: Quartz, Feldspar, Feldspathoid, Amphibole, Pyroxene, Olivine, Micaand Garnet.

UNITV

Optical Mineralogy: Properties of Light: Nature of Light-ordinary and plane Polarised light

 Light interaction with matter; reflection, defuse reflection, refraction, double refraction, refractive Index, total reflection, dispersion, relative retardation and birefringence. Polarising Microscope: Parts of Polarising Microscope and its uses - Study of Optical Properties of Minerals: Optical Properties under Plane Polarised Light: Form, Colour, relief,

RefractiveIndex,Cleavage,InclusionandAlteration,Pleochroism,Twinkling.OpticalProperties between Cross Nicol: Isotropism/Anisotropism, Interference colors, Extinction, Twinning,Zoning.Construction ofNicol prism-Preparation of Thin Section.

Mapping of Cos to POs and PSOs

	Course Outcome	PO Addressed	Correlation Level	PSO Addressed	Correlation Level	Cognitive Level
		PO1 to PO8	L/M/H	PSO1 to PSO8	L/ M/ H	K_1 to K_6
CO1	Remember the basic physical properties, optical properties	PO1	н	PSO2, PSO3	н	К1
CO2	Understand the crystal parameters	PO1,PO2	н	PSO2, PSO4	н	К2

	in minerals and crystal models					
CO3	Applythe understanding of physical, optical and other properties to determine the different groups and crystal systems.	PO4, PO6,	М	PSO5, PSO6	М	КЗ
CO4	Analyseindustrial applications and economic importance of various minerals.	PO3, PO5	М	PSO5, PSO7	М	К4
CO5	Evaluateminerals on the basis of the different properties and estimate a few physical properties like hardness and specific gravity of minerals	РО7, РО8	Н	PSO7, PSO6	Н	К5
CO6	Create models of crystals and mineral structures .	PO3, PO8	н	PSO8	н	К6

(L – Low, M – Medium, H – High; K_1 – Remember, K_2 – Understand, K_3 – Apply, K_4 – Analyze, K_5 –Evaluate, K_6 – Create)

TEXTANDREFERNCEBOOKS

- 1. Ford, W.E. (1988). Dana's Textbook of Mineralogy. Wiley. New Delhi. (Reprint).
- 2. Read, H.H. (1916). Rutleys elements of mineralogy, Thomas Murphy&co,. London.
- 3. Kerr, Paul. (1977). Optical mineralogy, McGraw hill, New York.
- 4. Deer, Howie andZussman(1964). an introduction to rock-forming minerals orient ,Longman, London.
- 5. Naidu, P.R.J. (1967). Optical Mineralogy.
- 6. Klein, Cand Hurlbut, Jr., C.S., (1993). Manual of Mineralogy, JohnWiley
- 7. PutnisAndrew, (1992). Introduction to mineral Sciences, Cambridge University Press
- 8. Philips, Wm, Rand Griffen, D.T., (1986). Optical mineralogy, CBSE dition
- 9. Hutchinson, C.S., (1974). Laboratory hand book of Petrographic Techniques, John Wiley
- 10. MacKenzie, W.S.&C. Guilford. (1993). Atlas of Rock-Forming Minerals in Thin Section, Longman, UK.

ONLINEOPENRESOURCES

- 1. MineralogyBook:<u>https://opengeology.org/Mineralogy/</u>
- 2. CrystallographyandMineralogylearningMaterial :<u>https://serc.carleton.edu/teachearth/themes/11</u>

MAJORPRACTICAL-3CRYSTALLOGRAPHYANDMINERALOGY

Course Code:

Course Objectives:

- To identify the crystal systems
- To identify the minerals through hand-specimen and thin sections

Course Outcomes* (COs):

After completion of this course, students will be able to

- CO1: Remember the basic physical and optical properties of classifications
- CO2: Understand the mineral character under light
- CO3: Apply the concepts of crystal system in minerals
- **CO4:** Analyse the crystallographic system
- **CO5:** Evaluate the mineral based on megascopic identification
- **CO6:** Create and prepare report on minerals and its crystal properties.

Course Outline:

CRYSTALLOGRAPHY

 $Identification and {\sf Description} of {\sf Following Crystals}.$

CubicSystem	:NormalClass–Galena, Spinel,Garnet,Fluorite, Diamond
:	Pyritohedral class–Pyrite.
TetragonalSystem	:NormalClass–Zircon,Rutile,Cassiterite,Vesuvianite, : Apophyllite.
HexagonalSystem	:NormalClass–Beryl.
	:Hemimorphic class – Zincite
TrigonalSystem	: Calcite andCorundum
OrthorhombicSystem:I	Normalclass–Barite, Staurolite, Sulphur, Topaz.
:	Hemimorphicclass–Calamine.
:Sphenoidal class – Eps	somite.
MonoclinicSystem	: Normal class – Gypsum, Epidote, Orthoclase.
TriclinicSystem	:Normal class– Axinite and Albite.

MINERALOGY MEGASCOPICMINERALOGY

L	Т	Р	С
0	0	2	2

Identification and description of the following silicate mineral groups.Quartz and its varieties,Feldspar group, Feldspathoids, Pyroxene group, Amphibole group, Epidote group, Mica group,Garnet group and AluminumSilicates.

OPTICALMINERALOGY

Microscopic identification and Description of the following:- Quartz, Orthoclase, Microcline, Albite, Oligoclase, Labradorite, Nepheline, Leucite, Enstatite, Hypersthene, Glaucophane, Biotite, Muscovite, Olivine, Epidote, Garnet, Apatite, Zircon, Sphene, Tourmaline, Calcite, Andalusite, Kyanite, Sillimanite, Staurolite, and Cordierite.

Mapping of Cos to POs and PSOs

	Course Outcome	PO Addressed	Correlation Level	PSO Addressed	Correlation Level	Cognitive Level
		PO1 to	L/M/H	PSO1 to	L/ M/ H	K ₁ to K ₆
		PO8		PSO8		
	Remember the basic physical					
CO1	and optical properties of	PO1	Н	PSO1, PSO3	Н	K1
	classifications			1303		
CO2	Understand the mineral	PO2	н	PSO2,	н	K2
02	character under light	POZ		PSO4		ΝZ
CO3	Apply the concepts of crystal	PO4, PO6,	М	PSO5,	М	K3
COS	system in minerals	P04, P00,	IVI	PSO6	101	кэ
CO4	Analyse the crystallographic	PO3, PO5	М	PSO5,	М	К4
04	system	r03, r03		PSO7	IVI	κ4
CO5	Evaluate the mineral based	PO7, PO8	н	PSO7,	н	K5
005	on megascopic identification	FU7, FU6	п	PSO6	п	КJ
	Create and prepare report					
CO6	on minerals and its crystal	PO3, PO8	н	PSO8	н	К6
	properties.					

(L – Low, M – Medium, H – High; K₁ – Remember, K₂ – Understand, K₃ – Apply,

 K_4 – Analyze, K_5 –Evaluate, K_6 – Create)

SKILLEDBASEDELECTIVE-1.1 REMOTESENSING ANDGIS

Course Code:

Course Objectives:

- The objective of this subject is to understand the basic principles of aerial photographs, aerialremote sensing and its applications.
- learn interpretation techniques of Remote Sensing and basics of GIS anditscomponents.

Course Outcomes* (COs):

After completion of this course, students will be able to

- **CO1:** Remember the Indian satellite types
- CO2: Understand the various photo recognition elements from remotely sensed data
- **CO3:** Apply the concepts of platforms and satellite orbits
- **CO4:** Analyse the remote sensing principles and photo recognition elements to identify various features
- CO5: Evaluate the GIS components and vector and raster data
- **CO6:** Create and compare between different types of remotely sensed data and evaluate its utility

Course Outline:

Unit I: Contact Hours: 12 Unit II: Contact Hours: 12 Unit III:Contact Hours: 12 Unit IV:Contact Hours: 12 Unit V: Contact Hours: 12

UNITI

Remote sensing: Definition, Basic concepts and principles of remote sensing, advantages and limitations - components of remote sensing - Electromagnetic Radiation:Properties of EMR,Electromagnetic Spectrum – AtmosphereInteraction: Refraction, Scattering, Absorption.Electromagnetic energy-Earth Interaction: Reflection, Transmission – Spectral Signature:Spectral Signature of Vegetation,Spectral Signature of Soil, Spectral Signature of Water, Spectral Signature of Mineralsand Rocks.

L	Т	Ρ	С
4	0	0	4

UNITII

RemoteSensingPlatforms:TerrestrialPlatforms,AirbornePlatforms,SpacebornePlatforms-Types of Satellites: Astronomical Satellites, Communication Satellites, Weather Satellites,Earth Observation Satellites, Navigation Satellites, Reconnaissance Satellites -*Orbits andtheir Types*: Geosynchronous Orbit, Sun synchronous Orbit- Sensor System: MultispectralImaging Sensor System, Thermal Remote Sensing System, Microwave Imaging System -Image Resolution-Types of Image Resolutions: Spatial Resolution, Spectral Resolution,RadiometricResolution, Temporal Resolution.

UNITIII

Aerial photographs –scales and types of aerial photographs- photo interpretation techniques –applications of aerial photographs. Mosaics: controlled and uncontrolled mosaics –advantageand disadvantages – application of mosaics in geology studies. Types of data products – typesofimageinterpretation –basicelementsofimageinterpretation–visualinterpretationkeys.

UNITIV

GIS definition -history of GIS – Components of GIS – Hardware, Software, Data, Peopleand Procedure. – GIS sub systems -Data types: Spatial data: raster, vector, TIN – Nonspatialdata. Coordinate systems: Geographic coordinate system, datum and map projection and itstypes, projected coordinate systems.

UNITV

VectorDataModel:SpaghettiVectorModel,TopologicalVectorModels.Rasterdatamodels: Simple Raster Arrays,Hierarchical Raster Structures,Types of Raster GIS Models,Compact Raster Data Models. Attribute data model:Hiearchial, network, relational andobject oriented model.Data Base Management System: functions of DBMS, components ofDBMS,data filemanagement: simplelist, orderedsequential files,indexed files.

Mapping of Cos to POs and PSOs

	Course Outcome	РО	Correlati	PSO	Correlation	Cognitive
	Course Outcome	Addressed	on Level	Addressed	Level	Level
		PO1 to PO8	L/M/H	PSO1 to	L/ M/ H	K ₁ to K ₆
				PSO8		
CO1	Remember the Indian	PO1	н	PSO1,	н	К1
	satellite types	POI		PSO2	п	K1
	Understand the various photo			56.00		
CO2	recognition elements from	PO1,PO2	Н	PSO3,	н	К2
	remotely sensed data			PSO4		
	Apply the concepts of	PO4, PO6,	М	PSO3,	М	К3
CO3	platforms and satellite orbits			PSO6		

CO4	Analyse the remote sensing principles and photo recognition elements to identify various features	PO3, PO5	Μ	PSO5, PSO7	Μ	К4
CO5	Evaluate the GIS components and vector and raster data	PO7, PO8	н	PSO7, PSO6	Н	К5
CO6	Create and compare between different types of remotely sensed data and evaluate its utility	PO3, PO8	н	PSO8	Н	K6

(L – Low, M – Medium, H – High; K_1 – Remember, K_2 – Understand, K_3 – Apply, K_4 – Analyze, K_5 –Evaluate, K_6 – Create)

TEXTANDREFERNCEBOOKS

- 1. Curran, P.B. (1985). Principles of Remote Sensing. ELBS. London.
- 2. Drury, S.D. (1993). ImageInterpretationinGeology. Allen & Unwin. London.
- 3. Miller, V.C. (1961). Photogeology. McGrawHill. NewYork.
- 4. Pandey, S.N. (1989). Principles and Applications of Photogeology. Wiley Eastern. New Delhi.
- 5. Reddy, A. (2010). Principles of Remote Sensing and GIS. CBS. Delhi.
- 6. Lillisand, T.M&R.W.Kiefer. (2000). Remote Sensing and Image Interpretation. Wiley. Delhi.
- 7. Gupta, R.P. (1990). Remote Sensing Geology, Springer Verlag.
- 8. Benhardsen, T., (2002). Geographic Information Systems: an Introduction, John Wile y&Sons, New York,
- 9. Guha, P.K., (2008). Remote Sensing for the Beginner, Second Edition, East-Westpress pvt. ltd, New Delhi. 178 pp.
- 10. IanHeywood,SarahCorrdiusandStevecarver,2000.AnintroductiontoGeographicI nformationsystem.LongmanLtd, Newyork

ONLINEOPENRESOURCES

- ACanadaCentreforRemoteSensingRemoteSensingTutorial
- https://www.nrcan.gc.ca/sites/www.nrcan.gc.ca/files/earthsciences/pdf/resource/tutor/fun dam/pdf/fundamentals_e.pdf
- Jonathan Campbell and Michael Shin (2011)Essentials of Geographic InformationSystems
- https://open.umn.edu/opentextbooks/textbooks/67

SKILLEDBASEDELECTIVE- 1.2 GEMMOLOGY

Course Code:

Course Objectives:

 Theobjectiveofthiscourseistointroducetheorigin,occurrenceandeconomicimporta nceofgemsandprecious materials.

Course Outcomes* (COs):

After completion of this course, students will be able to

- **CO1:** Remember the attributes of gemstones
- CO2: Understand the different gem instruments in identification of the gemstones
- **CO3:** Applythe treatments used in the gemstones to enhance their attributes
- **CO4:** Analyse the various gemstones based on their physical and optical properties.
- CO5: Evaluate and Discriminate between synthetic and natural gemstones
- **CO6:** Create and Organize various gemstones into different groups based on their physical and optical properties

Course Outline:

Unit I: Contact Hours: 12 Unit II: Contact Hours: 12 Unit III:Contact Hours: 12 Unit IV:Contact Hours: 12 Unit V: Contact Hours: 12

UNITI

Introduction to Gems - Basic properties of gems -formation of gem stones. Nature of gemmaterial: quality necessary in gems-beauty, rarity, durability. Distinction between crystalline, amorphous and metamict materials. Crystal forms and habits. Classification of gem stones. Observations with hand lens- its importance. Units of measurement: metric scale, carat, pearlandgrain.

UNITII

Nature of crystals: distinction between crystalline and amorphous material, crystal symmetry, Twinning, parallel growth, crystal form, crystal habit, seven crystal system. Identification of roughstones.

UNITIII

Physical properties: hardness and its applications in gemmology and limitations. Cleavage,Fracture, parting, and their importance in gemology and lapidary work. Specific gravity-utility and determination by hydrostatic weighing, heavy liquids, floatation and pycnometer.Inclusionsand otherfeatures ofgemstones.

L	Т	Ρ	С
4	0	0	4

UNITIV

Optical properties: The electromagnetic spectrum, reflection and its importance in gemology-

lustre, aventurescence, sheen, chatoyancy, asterism, luminescence, playof colours, labradores cence and inclusions. Laws of refraction, refractive index (R.I), total reflection-design of refractometer. Construction and use of refractometer. Polariscope-construction and useingemmology. Dichroscope construction, use of Chelsea colour filter, Infraredultraviolet and x-rays ingem identification.

UNITV

Enhancement and treatments- enhancement methods -coloured and colourless impregnation, dyeing, bleaching and its identification. Methods of treatment – laser drilling, irradiation,

heattreatment, surface modifications, diffusion treatment and its identification. Compositestypes, classification and identification.

	Course Outcome	РО	Correlation	PSO	Correlation	Cognitive
	Course Outcome	Addressed	Level	Addressed	Level	Level
		PO1 to PO8	L/M/H	PSO1 to PSO8	L/ M/ H	K ₁ to K ₆
CO1	Remember the attributes of gemstones	PO1	н	PSO1,	н	K1
CO2	Understand the different gem instruments in identification of the gemstones	PO1,PO2	н	PSO2, PSO3	н	К2
CO3	Applythe treatments used in the gemstones to enhance their attributes	PO4, PO6,	М	PSO5, PSO6	М	К3
CO4	Analyse the various gemstones based on their physical and optical properties.	PO3, PO5	М	PSO4, PSO7	М	К4
CO5	Evaluate and Discriminate between synthetic and natural gemstones	PO7, PO8	н	PSO7, PSO6	н	К5
CO6	Create and organize various gemstones into different groups based on their physical and optical properties	PO3, PO8	н	PSO8	н	K6

Mapping of Cos to POs and PSOs

(L – Low, M – Medium, H – High; K_1 – Remember, K_2 – Understand, K_3 – Apply, K_4 – Analyze, K_5 –Evaluate, K_6 – Create)

TEXTANDREFERNCEBOOKS

- 1. Karanth,R.V. (2000). Gem and gem industry in India, Memoir 45, Geological Societyof India, Bangalore.
- Babu,T.M. (1998). Diamond in India, Economic Geology Series
 1, GeologicalSocietyofIndia, Bangalore.
- 3. Hall, C. (2005). Gemstones, Dorling Kindersley, London.
- 4. Sinkankas, J.J. (1964). Mineralogy: Afirst Course, VanNostrand Reinhold, NewYork.
- 5. Krishnan, M.S. (1964). Mineral Resources of Madras, Memoir Vol 80, Geological Survey of India , Kolkota
- 6. Prasad, U. (2003). Economic Mineral Deposits, CBSPublishers, New Delhi.
- 7. Read, P.G. (1984). Beginner's Guide to Gemmology, Heinemann ProfessionalPublishingLtd, London.
- 8. O'Donoghue, M. (2006). Gems. Elsevier, Singapore.
- 9. Keller, P.C. (1990). Gemstones and their origins, VanNostrand Reinhold, NewYork.
- 10. HerbertSmith, G.F(1912). Gemstones. Metheun, London.

Non– MajorElectiveOffered byGeologyDepartment to students of anotherDepartment SKILLEDBASEDELECTIVE–1.1 CLIMATOLOGY

Course Code:

Course Objectives:

- To understand the flow of energy and its interactions with the earth.
- Gain knowledge on componentsofclimatesystem and associated climateoutcomes.

Course Outcomes* (COs):

After completion of this course, students will be able to

- CO1: Remember the interaction between the atmosphere and the earth's surface
- CO2: Understand the importance of the atmospheric pressure and winds
- **CO3:** Applythe atmospheric moisture works
- **CO4:** Analyse the cyclones and its impacts.
- CO5: Evaluate and seasonal and regional climate variations
- **CO6:** Create the model of climate and seasonal changes

Course Outline:

Unit I: Contact Hours: 6 Unit II: Contact Hours: 6 Unit III: Contact Hours: 6 Unit IV: Contact Hours: 6 Unit V: Contact Hours: 6

UNITI

Introductiontoclimatology:physicalelementsofweatherandclimate:-Fundamentalprinciples of climatology, Atmosphere, Climate system: Components of the climate system -Climate controlling factors. Earth's radiation balance – longitudinal and seasonal variation of insolation.

UNITII

Atmospheric moisture and Precipitation: - hydrological cycle - Precipitation and Rainfall:Types and measurements. Weather elements: Temperature, pressure, humidity, clouds, wind, sunshine and rainfall – monsoon patterns.

UNITIII

Atmospheric Pressure: Diurnal and Seasonal Variations – Vertical and Horizontal distributionand factors affecting - Pressure Gradient - Coriolis force and Deflection.

L	Т	Ρ	С
2	0	0	2

Winds: Causes and Types - Jet stream, planetary winds, Monsoon and Local winds. Cyclones – Definition, types and their effects and geographic distribution.

UNITIV

Classification of climates –Koppen's and Thornthwaite's scheme of classification – climatechange.Ocean circulation, patternand its climate control.

UNITV

Global warming: Definition, greenhouse effect, greenhouse gases, Impact of climate change, prevention of global warming Acid rain: Definition, causes, formation, affected area, effects and preventive measures. Ozone depletion: Definition, effects and preventive measures.

	Course Outcome	PO Addressed	Correlation Level	PSO Addressed	Correlation Level	Cognitive Level
		PO1 to PO8	L/M/H	PSO1 to PSO8	L/ M/ H	K ₁ to K ₆
C01	Remember the interaction between the atmosphere and the earth's surface	PO1	Н	PSO1,	Н	К1
CO2	Understand the importance of the atmospheric pressure and winds	PO1, PO2	н	PSO2, PSO3	н	K2
CO3	Applythe atmospheric moisture works	PO4, PO6,	М	PSO4, PSO5	М	К3
CO4	Analyse the cyclones and its impacts.	PO3, PO5	Μ	PSO6, PSO7	Μ	K4
CO5	Evaluate and seasonal and regional climate variations	PO7, PO8	Н	PSO7, PSO6	Н	K5
CO6	Create the model of climate and seasonal changes	PO3, PO8	Н	PSO8	Н	K6

Mapping of Cos to POs and PSOs

(L – Low, M – Medium, H – High; K_1 – Remember, K_2 – Understand, K_3 – Apply, K_4 – Analyze, K_5 –Evaluate, K_6 – Create)

TEXTANDREFERNCEBOOKS

- 1. Montgomery, C.W. (1989) Environmental Geology. Brown Publishers, Dubuque, Iowa, USA.
- Strahler, A.N. and Strahler, A.H. (1973) Environmental Geoscience Interactionbetween Natural Systems and Man. Hamilton Publishing Co., Santa Barbara, California.
- 3. Kudesia, V.P. (1980) WaterPollution. PragathiPrakasam, Meerut.

- 4. Kothandaraman, H. (1997) Principles of Environmental Chemistry. BI PublicationsPvt.Ltd., Chennai.
- 5. Black, W. (1972) AtmosphericPollution. McGraw-HillCo., NewYork.
- 6. Trivedy, R.K. and Goel, P.K. (1986) Chemical and Biological Methods for Pollution
- 7. Studies.EnvironmentalPublications,Karad,Maharashtra.
- 8. Fairbridge, R.W. (1972) Encyclopedia of Geochemistry and Environmental Science.JohnWiley.
- 9. Datta, M.andSingh, N.P.etal. (Eds.) (2008) Climate Change and FoodSecurity. New Delhi Publishing Agency.
- 10. Shyam, S., Verma, H.N. and Bhargava, S.K. (2006) Air Pollution and its Impacts onPlantGrowth. New Delhi PublishingAgency

ONLINEOPENRESOURCES

 Andreas Schmittner (2018) Introduction to Climate Science, Oregon State

University.<u>https://open.umn.edu/opentextbooks/textbooks/860</u>

Non– MajorElectiveOffered byGeologyDepartment SKILLEDBASEDELECTIVE–1.2 FUNDAMENTALSOFGEOLOGY

Course Code:

Course Objectives:

Thiscourseprovides the basic principles of Geology, Composition and age of the earth, Earth's exodynamic and endodynamic processes and its effects on Earth's surface.

Course Outcomes* (COs):

After completion of this course, students will be able to

- **CO1:** Remember the basics of earth and atmosphere
- **CO2:** Understand the interior of the earth along with their physical and chemical properties.
- CO3: Applythe seismic properties of earth and its influence on earthquakes
- **CO4:** Analyse the weathering of rocks and its relationship with soil formation.
- CO5: Evaluate the processes involved in plate movements
- **CO6:** Create the model for river process,

Course Outline:

Unit I: Contact Hours: 6 Unit II: Contact Hours: 6 Unit III: Contact Hours: 6 Unit IV: Contact Hours: 6 Unit V: Contact Hours: 6

Unit–I

Definition of Geology – Branches of Geology – Geology in the service of Man. The Solarsystem: – The Planets – Meteorites – Asteroids – Satellites – Comets; Evolution of the Solarsystem–Nebularhypothesis–Planetesimalhypothesis– StructureandcompositionofEarth'sinterior.

Unitll

Earthquakes:Definition–causesandeffects–FocusandEpicentre–MagnitudeandIntensity– Prediction ofEarthquakes– Tsunami- Earthquakes inIndia.*Volcanoes*: Definition-Types – Causesofvolcanism– Effectsof Volcanic activity-Predictionofvolcanoes.

UnitIII

Mass movements - Definition - Classification - Causes and remedial measures. Concept

Т

0

L 2 Ρ

0

С

2

of*plate tectonics* – Different kinds of plate margins– Evidences in favor and against theconceptsof ContinentalDrift and PlateTectonics.

UnitIV

Weathering of Rocks –weathering processes, chemical and mechanical weathering Economicimportance ofweathering. Atmosphere–Itscomposition and zones. Wind–Geologicalactionofwind-sand dunes and theirtypes.

UnitV

Running water –erosion, transportation and deposition – brief study of landforms resultingfromerosionanddeposition.Undergroundwater–sources–watertable–

zonesofgroundwater – springs and wells – artesian wells – geysers– aquifers. Glaciers – origin andtypesof glaciers.SeasandOceans–waves,tides andcurrents–sea asa geologicalagent.

Mapping of Cos to POs and PSOs

	Course Outcome	PO Addressed	Correlation Level	PSO Addressed	Correlation Level	Cognitive Level
		PO1 to PO8	L/M/H	PSO1 to PSO8	L/ M/ H	K ₁ to K ₆
CO1	Remember the basic of earth and atmosphere	PO1	н	PSO1,	н	K1
CO2	Understand the interior of the earth along with their physical and chemical properties.	PO1,PO2	н	PSO2, PSO3	н	K2
CO3	Applythe seismic properties of earth and its influence on earthquakes	PO4, PO6,	Μ	PSO5, PSO6	Μ	К3
CO4	Analyse the weathering of rocks and its relationship with soil formation.	PO3, PO5	Σ	PSO4, PSO7	Μ	К4
CO5	Evaluate the processes involved in plate movements	PO7, PO8	н	PSO7, PSO6	н	К5
CO6	Create the model for river process,	PO3, PO8	н	PSO8	н	K6

(L – Low, M – Medium, H – High; K_1 – Remember, K_2 – Understand, K_3 – Apply, K_4 – Analyze, K_5 –Evaluate, K_6 – Create)

- 1. Radhakrishnan, V., (1996). General Geology V.V.P. Publishers, Tuticorin.
- 2. Arthur Holmes (1992) Principles of Physical Geology: Thomas Nelson & sonsLondon.
- 3. CharlesC.Plummer,DianeH.CarlsonandLisaHammersley(2019) PhysicalGeology(16thEd). McGraw-Hill Education
- 4. Thornbury.W.D(1969). PrinciplesofGeomorphology., Wiley, NewYork.
- 5. StrahlerA.M(1965).IntroductiontoPhysicalGeology.,Wiley
- 6. Mahapatra, G.P. (1994). Physical Geology, CBSPublishers, New Delhi.
- 7. Emiliani, C. (1992). Planet Earth, Cambridge University Press, Delhi.
- 8. Leet, D&Judson, S(1987). Physical Geology, McGraw Hill. New Jersey.
- 9. Patwardhan, A.M. (1999). Dynamic Earth System, Prentice Hall, New Delhi
- 10. Dasguptha, A.B. (1978). Physical Geography, CBSPublishers, Delhi.

PALAEONTOLOGY

Course Code:

Course Objectives:

- to impart knowledge on origin of life and its evolutionthroughgeologicaltime
- to

preservationfossils, general morphology, classification, geologic history and stratigraphic importance of various phylum.

Course Outcomes* (COs):

After completion of this course, students will be able to

- **CO1:** Remember the basic of biological sciences
- **CO2:** Understand the various processes involved in the formation of fossils.
- **CO3:** Apply the morphological studies and classify various types of fossils on the basis of their morphological features.
- **CO4:** Analysesignificance of fossils in the interpretation of depositional environments.
- **CO5:** Evaluate the fossils belonging to various phyla
- **CO6:** Create the significance of fossils in palaeoclimate interpretation

Course Outline:

Unit I: Contact Hours: 12 Unit II: Contact Hours: 12 Unit III:Contact Hours: 12 Unit IV:Contact Hours: 12 Unit V: Contact Hours: 12

UNIT– I

Definition of Palaeontology- Animal Kingdom – classification of animals –Definition offossils–natureandmodesofpreservationoffossils,Tracefossils-mould,casts,tracks,trails, borings; Uses of fossils – stratigraphic indicators – climatic indicators- indicators ofpalaeogeography– indicators of evolution and migration of lifeforms.

UNIT-II

PhylumArthropoda: Class – Trilobita- General morphology : classification– geologicalhistory.PhylumPorifera–Ashortaccountofsponges.Phylumcoelentrata–

classAnthozoa – zoological features – General morphology : classification – tabulate corals – Rugose coralsgeological distribution – stratigraphic importance. Subphylum Hemichordata – classGraptozoa: order Dendroidea and Graptoloidea –

generalmorphology, classification, geological distribution and stratigraphic importance.

L	Т	Ρ	С
4	0	0	4

understand

37

UNIT–III

Phylum Mollusca: Class Pelecypoda - General characters – ornamentation , classification , geological history. Class Gastropoda:- General morphology , shell forms – types of coiling –Dextralandsinistral–

ornamentation, classification and geological history. Class Cephalopoda:- General morphology , (Nautilitic , Goniotitic , Ceratitic and Ammonitic) – shell forms – ornamentation – classification, geological history- morphology of a Belemniteshell.

UNIT-IV

PhylumBrachiopoda:-Generalmorphology –Brachialskeleton– morphometricdetails,ornamentation , classification , geological history. Phylum Echinodermata: Class

Echinoidea:Generalmorphology,corona(Ambulacra,interambulacra)-peristome-

regular and irregular echinoids-classification-geological history. Class Crinoidea:-

Generalmorphology,classification,geologicalhistory.ClassBlastoidea:Generalmorphology.

UNIT-V

Phylum protozoa – Order: Foraminifera: General morphology – dimorphism –
classification ,geologicalhistoryandstratigraphicimportance.ClassCrustacea:-
Subclass:Ostracoda-morphology – A short account of Devonian fishes, Mesozoic Reptiles,
Siwalik mammals.General classification of plant kingdom – plant fossils from India – A
brief account of thefollowingplantfossils:-
Glossopteris,Gangamopteris,Ptilophyllum,Calamites,Lepidodendronand Sigillaria.
Applications of Micro palaeontology.

	Course Outcome	PO Addressed	Correlation Level	PSO Addressed	Correlation Level	Cognitive Level
		PO1 to PO8	L/M/H	PSO1 to PSO8	L/ M/ H	K ₁ to K ₆
CO1	Remember the basic of biological sciences	PO1	н	PSO1, PSO2	н	K1
CO2	Understand the various processes involved in the formation of fossils.	PO1,PO3	н	PSO3,	н	K2
CO3	Apply the morphological studies and Classify various types of fossils on the basis of their morphological features.	PO4,	Μ	PSO5, PSO6	Μ	K3
CO4	Analysesignificance of fossils in	PO4, PO5	М	PSO5,	М	K4

Mapping of Cos to POs and PSOs

	the interpretation of			PSO7		
	depositional environments.					
CO5	Evaluate the fossils belonging	PO7, PO8	н	PSO7,	н	K5
COS	to various phyla	PU7, PU8	п	PSO6	п	кЭ
	Create the significance of					
CO6	fossils in palaeoclimate	PO3, PO8	Н	PSO8	Н	К6
	interpretation					

(L – Low, M – Medium, H – High; K_1 – Remember, K_2 – Understand, K_3 – Apply, K_4 – Analyze, K_5 –Evaluate, K_6 – Create)

- 1. Henrywoods (2011)Invertebrate Palaeontology,8th Ed,Cambridge.
- 2. Romer, A.S. (1945) Vertebrate Palaeontology, Chicagopress.
- 3. Arnold, C.A. (1972) An introduction to Palaeobotany., MC-Graw Hill.
- 4. B.U.HagandA. Boersma(1978):IntroductiontomarineMicropalaeontology.Elsevier,Netherlands
- 5. Jain, P.C., and Anatharaman, M.S. (2016) An introduction to Paleontology, VishalPublications.
- 6. Foote, M. and Miller, I.A. (2007) Principles of Paleontology. 3rd Edition by W. H.Freemanandcompany
- 7. Clarkson, E. N. K. (2012) Invertebrate paleontology and evolution. 4th Edition byBlackwellPublishing.
- 8. Benton, M. (2009). Vertebrate paleontology. John Wiley & Sons. 4th Edition.
- 9. Dasgupta, A., (2005), Introduction to Palaeon tology, (1Edition), World Press
- 10. Black, R.M. (1988): The Elements of Palaeontology, Cambridge Univ

MAJORPRACTICAL-IV PALAEONTOLOGY

Course Code:

Course Objectives:

 To understand and identify the morphological characters of various phylum and study its relationships with stratigraphy.

Course Outcomes* (COs):

After completion of this course, students will be able to

- .CO1: Remember the basic of morphological studies
- **CO2:** Understand the different mega fossils on the basis of morphological characters.
- **CO3:** Apply the systematic classifications
- **CO4:** Analyse the Biological position and range of time of fossils.
- **CO5:** Evaluate the fossils belonging to palaeo-environment
- **CO6:** Create the significance of fossils in resource estimation

Course Outline:

Coelenterat	Montlivaltia
а	Zaphrentis
Brachiopoda	Productus, Spirifer, Terebratula, Rhynchonella
Pelecypoda	Arca, Spondylus, Trigonia, Meretrix, Venus, Alectryonia, Ostreae, Gryphaea, Exogy
Генесуройа	ra
Gasteropod	Physa,Turritella, Fusus,Trochus,Conus.
а	
Cephalopod	Nautilus, Ceratite, Aconthoceras, Belemnites
а	
Trilobites	Paradoxides, Calymene.
Echinoids	Hemiaster, Micraster, Stigmatopygous.

L		Т	Ρ	С
0)	0	2	2

Mapping of Cos to POs and PSOs

	Course Outcome	РО	Correlation	PSO	Correlation	Cognitive
	Course Outcome	Addressed	Level	Addressed	Level	Level
		PO1 to	L/M/H	PSO1 to	L/ M/ H	K ₁ to K ₆
		PO8		PSO8		
	Remember the basic	PO1	н	PSO1,	н	K1
CO1	of morphological studies			PSO2		
	Understand the	PO1,PO2	Н	PSO2,	Н	К2
	different mega fossils			PSO3		
CO2	on the basis of					
002	morphological					
	characters.					
	•					
CO3	Apply the systematic	PO4, PO6,	М	PSO4,	М	КЗ
	classifications					
	Analyse the	PO3, PO5	М	PSO5,	М	К4
CO4	Biological position			PSO7		
	and range of time of fossils.					
	Evaluate the fossils	PO7, PO8	Н	PSO7,	Н	K5
CO5	belonging to palaeo			PSO6		
	environment					
	Create the	PO3, PO8	Н	PSO8	Н	К6
CO6	significance of					
	fossils in resource					
	estimation					

(L – Low, M – Medium, H – High; K_1 – Remember, K_2 – Understand, K_3 – Apply, K_4 – Analyze, K_5 –Evaluate, K_6 – Create)

STRATIGRAPHY

Course Code:

Course Objectives:

L	Т	Ρ	С
4	0	0	4

- To learn about the geological time scale, principles of stratigraphy.
- Understandstrata and their relationship to tectonics, climate, fossils alongwith their distribution in differentparts ofIndia from Precambriantorecent.

Course Outcomes* (COs):

CO1:	Remember the fossils character and geological time scale
CO2:	Understand the various elements of stratigraphy and give their importance.
CO3:	Apply the geological formations knowledge
CO4:	Analyse the geological formations.
CO5:	Evaluate the distribution of geological formations in India
CO6:	Create the significance of various stratigraphic features in India

Course Outline:

Unit I: Contact Hours: 12 Unit II: Contact Hours: 12 Unit III:Contact Hours: 12 Unit IV:Contact Hours: 12 Unit V: Contact Hours: 12

UNITI

PrinciplesofStratigraphy:LawsofStratigraphy,Correlation,Geologicaltimescale,Fundamenta lconceptsoflithostratigraphy,biostratigraphy,chronostratigraphy,seismicstratigraphy,chem ostratigraphyanddynamicstratigraphy.Codeofstratigraphicnomenclature, International Stratigraphic Code – development ofstandardized stratigraphicnomenclature.Conceptofpaleogeographicreconstruction,Faciesandfacieschan ge,Hiatusinrecords. Physiographicdivisions ofIndia.

UNITII

Precambrian Stratigraphy: Archaean's of Dharwar Province, Archaean's of Eastern Ghat -TheSausar and Sakoli Series, Archaeans of Singhbhum – Iron Ore Series and Gangpur Series.Archaean's of Tamilnadu. The Eparchaean Unconformity, Stratigraphy and Mineral Wealthof Cuddapah, Stratigraphy and Mineral Wealth of Vindhyan, Kurnool group, Life duringPrecambrian

UNITIII

PaleozoicStratigraphy:DistributionofPaleozoicrocksinIndia,CambrianofSaltRange, Upper Carboniferous and Permian rocks of Salt Range, Paleozoic rocks of Kashmir Valley,Paleozoicrocks of SpitiValley, Paleozoic rocksof PeninsularIndia,

UNITIV

MesozoicStratigraphy:TheDepositionalEnvironment-distribution-life-

classificationandeconomicimportanceofGondwanaformationsofIndia,CoastalGondwanaof India,Gondwana formations of Tamilnadu, Triassic of Spiti– The Lilang System, Jurassic ofKutch, Cretaceous of Tiruchirapalli – Pondicherry – Bagh Beds, Deccan traps : distribution ,structure,Lameta beds –infratrappean and intertrappeanbeds, ageofthe Deccantraps

UNITV

Cenozoic Stratigraphy: Comprehensive account of the geological events took place duringCenozoicerainIndia,riseofHimalayas,stratigraphyofSiwaliksystem,faunaandfloraof Siwaliks, Tertiary rocks of Assam, Karewa formation, Tertiary rocks of Tamilnadu, Tertiaryrocks of Kerala, Pleistocene Glaciation - Mineral wealth of Tertiary rocks of India: ImportantStratigraphicboundariesinIndia.

Mapping of Cos to POs and PSOs

	Course Outcome	PO Addressed	Correlation Level	PSO Addressed	Correlation Level	Cognitive Level
		PO1 to PO8	L/M/H	PSO1 to PSO8	L/ M/ H	K ₁ to K ₆
CO1	Remember the fossils character and geological time scale	PO1	н	PSO2, PSO3	н	К1
CO2	Understand the various elements of stratigraphy and give their importance.	PO1,PO2	Н	PSO2, PSO4	н	К2
CO3	Apply the geological formations knowledge	PO4, PO6,	М	PSO5, PSO6	М	К3
CO4	Analyse the geological formations.	PO3, PO5	М	PSO5, PSO7	М	K4
CO5	Evaluate the distribution of geological formations in India	PO7, PO8	Н	PSO7, PSO6	н	K5
CO6	Create the significance of various stratigraphic features in India	PO3, PO8	н	PSO8	н	К6

(L – Low, M – Medium, H – High; K_1 – Remember, K_2 – Understand, K_3 – Apply, K_4 – Analyze, K_5 –Evaluate, K_6 – Create)

TEXTANDREFERNCEBOOKS

- 1. KrishnanM.S., (1968). Geology of India and Burma, Higgin botham's.
- 2. WadiaD.N.(1953).GeologyofIndia,McMillianand Co.
- 3. Ravindra Kumar. (1985). Fundamentals of Historical Geology and Stratigraphy ofIndia.
- 4. Dunbar, C.O. & Rogers, J. (1961). Principles of Stratigraphy, Wiley.
- 5. Eicher, L.D. (1968). Geologictime. Prentice Hall.
- 6. Gignoux, M. (1960). Stratigraphic Geology, Freeman
- 7. PascoE.S.(1973). Amanual of the Geology of India and Burma.
- 8. StokesW.L. (1965). Essentials of Earth History.
- Weller, M., (1960) Harper & Brothers, New York Stratigraphic Principles and Practice. Harper & Brothers, NewYork.
- 10. LemonR.R,(1990)PrinciplesofStratigraphy,Merrillpublishingcompany.

ONLINEOPENRESOURCES

1.Stratigraphy:<u>https://opengeology.org/historicalgeology/stratigraphy-reading-</u> <u>the-pages-of-earth-history/</u>

GEOSTATISTICSANDCOMPUTERAPPLICATIONS

Course Code:

Course Objectives:

- L T P C 4 0 0 4
- To learn the various statistical analytical methods, data analysis and representation, computerbased analyticalskills and usage of software.

Course Outcomes* (COs):

After completion of this course, students will be able to

CO1:	Remember the fundamentals of computer
CO2:	Understand the various sampling techniques related to geosciences.
CO3:	Apply the basic geostatistical approach
CO4:	Analyse the geological data
CO5:	Evaluate the computer based geological analysis
CO6:	Create the significance of geostatistics using computer application

Course Outline:

Unit I: Contact Hours: 12 Unit II: Contact Hours: 12 Unit III:Contact Hours: 12 Unit IV:Contact Hours: 12 Unit V: Contact Hours: 12

UNITI

Definition of Statistics - Sampling and population.Measures of central tendency — mean,median, mode, standard deviation, skewness and kurtosis. Nominal, Ordinal, Interval andRatio scales.Discontinuous and continuous data.Ungrouped and grouped scores.Graphicalrepresentationofdata;barcharts,histograms,linegraph,XYgraph,frequenc yandcumulativefrequencycurves.Hypothesistesting,student's't'and 'F' tests.

UNITII

Geological Data types - Parametric Statistics and Nonparametric Statistics. Karl Pearson'scorrelation, Spearman'srank correlation - Probability and normal distribution - SimpleLinearRegression-Goodnessof fit tests:Chi-squaretest. Scales of measurements.

UNIT-III

Geological Data Analyses - Principal component analysis – Discriminant analysis - Timeseriesanalyses - mapanalysis – Clusteranalysis – Factor analysis.

UNITIV

IntroductiontoComputer–Elementsof Computer:Hardware andSoftware-Hardware:InputdevicesandOutputdevices.BasicsofAlgorithm,Flowcharts,Programminglan guages, OperatingSystems: DOS and Windows .

UNIT-V

Computer applications in Geosciences:Basics of MS Office: Word, Excel and Power Point.Excel graphical representation in Geology : Bar diagram, pie diagram, role diagrams, scatterplotsandX-Y plots. Application ofGoogleEarth in Earth Science.

	Course Outcome	РО	Correlation	PSO	Correlation	Cognitive
	Course Outcome	Addressed	Level	Addressed	Level	Level
		PO1 to	L/M/H	PSO1 to	L/ M/ H	K ₁ to K ₆
		PO8	L/ 101/11	PSO8		$K_1 to K_6$
CO1	Remember the fundamentals of	PO1	н	PSO1,	н	К1
001	computer	FOI	11	PSO3	11	KI
	Understand the various sampling					
CO2	techniques related to	PO1,PO2	Н	PSO2, PSO4	Н	К2
	geosciences.			1304		
соз	Apply the basic geostatistical	PO4,	М	PSO5,	М	К3
cos	approach	PO4,	IVI	PSO6	IVI	кэ
CO4	Analyse the geological data	PO3, PO6	М	PSO7	М	K4
COF	Evaluate the computer based		н		н	KE
CO5	geological analysis	PO7, PO8	н	PSO6	н	K5
	Create the significance of					
CO6	geostatistics using computer	PO3, PO8	Н	PSO8	Н	К6
	application					

Mapping of Cos to POs and PSOs

(L – Low, M – Medium, H – High; K_1 – Remember, K_2 – Understand, K_3 – Apply, K_4 – Analyze, K_5 –Evaluate, K_6 – Create)

- 1. Ravichandran, D. (2001). Introduction to Computers and Communication. TataMcGraw Hill.Delhi.
- Guptha,S.(2004). Basic Statistics. S.Chand& Sons. Delhi. 8. Davis,J.C. (1985).Statisticaland Data Analysisin Geology.Wiley. Delhi.
- 3. Guptha, S. (1990). Statistical Methods. S. Chand & Sons. Delhi.
- 4. Schabenberger, O. and Gotway, C. (2005) Statistical Methods for Spatial DataAnalysisChapman&Hall/CRC.

- 5. PeterJ.Diggle, Paulo J.Ribeiro, Jr (2007) Model-based Geostatistics, Springer.
- 6. Cressie, N. (1993). Statistics for Spatial Data (Revised Ed.). John Wiley & Sons, Inc.
- 7. Banerjee, S, Carlin, B., andGelfand, A. E. (2004) Hierarchical modelling andanalysisforspatial data.Chapman &Hall
- 8. Wackernagel, Hans(1998) Multivariate Geostatistics (2nded.) Springer.
- 9. Alexis Leon and MathewsLeon, 1999,-fundamentals of information technology LeonTech World Publications..
- 10. Kettell, Hart, Davils, Simmons, Hill Microsoft office 2003 The complete Reference , Tata McGraw Hill.

Non– MajorElectiveOffered byGeologyDepartment GEOHYDROLOGY

Course Code:

Course Objectives:

L	Т	Ρ	С
2	0	0	2

 To learn the origin and distribution of hydrological cycle,groundwater, aquifer, riverfeatures,alongwith hydrogeological properties of rockandgroundwaterinvestigation.

Course Outcomes* (COs):

After completion of this course, students will be able to

CO1:	Remember the concept of hydrological cycle
CO2:	Understand the origin of water from various sources
CO3:	Apply the methods to study Groundwater survey and vertical distribution
CO4:	Analyse the concept of aquifers and their boundaries
CO5:	Evaluate the rainwater harvesting techniques
CO6:	Create and prepare the groundwater chart with rock properties

Course Outline:

Unit I: Contact Hours: 6 Unit II: Contact Hours: 6 Unit III:Contact Hours: 6 Unit IV:Contact Hours: 6 Unit V: Contact Hours: 6

UNITI

Originofgroundwater-meteoricwater, connatewater and juvenilewater – vertical distribution of groundwater – zone of aeration, zone of saturation and water table. Definition of aquifer, aquitard, aquifuge and aquiclude. Types of aquifers – unconfined, confined, semiconfined, leaky and perched aquifers – Artesian wells, Geologic formations of Aquifers.

UNITII

Hydrologiccycle–Variouscomponentsofhydrologicalcycle–Precipitation,Runoff,Infiltration, Evaporation and transportation. Groundwater quality – physical, biological andchemicalqualities – drinkingwater standards.

UNITIII

Running water – source and surface flow – erosion, transportation and deposition –landformsbyerosionanddeposition;valleydevelopment;drainagepatterns–

fluvialcycle(youthmaturityand old age); stream rejuvenation-rivercapture.

UNITIV

Hydrogeological properties of rocks, Rock properties affecting groundwater, Porosity andpermeability.Groundwaterexploration: electrical resistivitymethod.

UNITV

Rainwatermeasurementtechnique-Raingaugesandtheirdistribution.Rainwaterharvesting– Definition, method and their importance. Watershed Management, Groundwater recharge – naturaland artificial rechargemethods.

Mapping of Cos to POs and PSOs

Course Outcome	PO	Correlation	PSO	Correlation	Cognitive
course Outcome	Addressed	Level	Addressed	Level	Level
	PO1 to	L/M/H	PSO1 to	L/ M/ H	K ₁ to K ₆
	PO8		PSO8	_,,	
Remember the concept of	P ∩1	н	PSO1,	н	К1
hydrological cycle	101		PSO2		KI
Understand the origin of water	DOJ	н		Ц	К2
from various sources	PO2,		P305	п	ĸΖ
Apply the methods to study					
Groundwater survey and vertical	PO3, PO6,	М	PSO4,	М	КЗ
distribution					
Analyse the concept of aquifers		NA		NA	К4
and their boundaries	PU4, PU5	IVI	PSU5,	IVI	κ4
Evaluate the rainwater		Ц	DSOG	Ц	KE
harvesting techniques	PU7, PU8	1	P300,		K5
Create and prepare the					
groundwater chart with rock	PO3, PO8	Н	PSO8	Н	К6
properties					
	hydrological cycle Understand the origin of water from various sources Apply the methods to study Groundwater survey and vertical distribution Analyse the concept of aquifers and their boundaries Evaluate the rainwater harvesting techniques Create and prepare the groundwater chart with rock	AddressedPO1 to PO8Remember the concept of hydrological cyclePO1Understand the origin of water from various sourcesPO2,Apply the methods to study Groundwater survey and vertical distributionPO3, PO6,Analyse the concept of aquifers and their boundariesPO4, PO5Evaluate the rainwater harvesting techniquesPO7, PO8Create and prepare the groundwater chart with rockPO3, PO8	AddressedLevelPO1 to PO8L/M/HRemember the concept of hydrological cyclePO1HUnderstand the origin of water from various sourcesPO2,HApply the methods to study Groundwater survey and vertical distributionPO3, PO6,MAnalyse the concept of aquifers and their boundariesPO4, PO5MEvaluate the rainwater harvesting techniquesPO7, PO8H	AddressedLevelAddressedPO1 to PO8PO1 to L/M/HPSO1 to PSO8Remember the concept of hydrological cyclePO1HPSO1, PSO2Understand the origin of water from various sourcesPO2,HPSO3Apply the methods to study Groundwater survey and vertical distributionPO3, PO6,MPSO4,Analyse the concept of aquifers and their boundariesPO4, PO5MPSO5,Evaluate the rainwater harvesting techniquesPO7, PO8HPSO6,	AddressedLevelAddressedLevelPO1 to PO8PO1 to PO8L/M/HPS01 to PS08L/ M/ HRemember the concept of hydrological cyclePO1HPS01, PS02HJnderstand the origin of water from various sourcesPO2,HPS03HApply the methods to study Groundwater survey and vertical distributionPO3, PO6,MPS04,MAnalyse the concept of aquifers and their boundariesPO4, PO5MPS05,MEvaluate the rainwater harvesting techniquesPO7, PO8HPS06,H

(L – Low, M – Medium, H – High; K_1 – Remember, K_2 – Understand, K_3 – Apply, K_4 – Analyze, K_5 –Evaluate, K_6 – Create)

- 1. Todd, D.K. (2008). Groundwater Hydrology. 5 thed. Wiley. New Delhi.
- 2. Davis, S.N.&R.J.M.DeWiest. (1966). Hydrogeology. Wiley. Delhi.
- 3. Freeze, R.A.&J.A.Cherry. (1979). Groundwater. Prentice Hall. New York.
- 4. Raghunath, H.M. (1988). Groundwater. East WestPub. Delhi.
- 5. Raghunath, H.M. (1985). Hydrology. EastWest Pub. Delhi.
- 6. Fetter, G.W. (1989). Applied Hydrogeology. CBS. Delhi.
- 7. Ramakrishnan, S. (2011). Ground Water. Scitech Publications. Chennai.
- 8. Garg, S.P. (1982). Groundwaterand TubeWells.Oxford&IBH. Delhi

Non– MajorElectiveOffered byGeologyDepartment MINERALECONOMICS

L	Т	Ρ	С
2	0	0	2

Course Code:

Course Objectives:

- Understand the origin of ore minerals
- Gain knowledge on distribution of ore minerals in India

Course Outcomes* (COs):

After completion of this course, students will be able to

CO1:	Remember the basic principles of mineralogy
CO2:	Understand the mineral types and classification
CO3:	Apply the methods to explore minerals
CO4:	Analyse the mineral policies in India
CO5:	Evaluate potential mineral fuels in India
CO6:	Create the mineralogical map of the regions

Course Outline:

Unit I: Contact Hours:6 Unit II: Contact Hours: 6 Unit III:Contact Hours:6 Unit IV:Contact Hours: 6 Unit V: Contact Hours:6

UNITI

Introduction to mineral science – Economic minerals – ore – ore minerals, gangue minerals, tenor and grade or ores. Mineral formation process. Physical and chemical properties of minerals.

UNITII

National Mineral Policy and conservation of minerals-

an overview of the mines and minerals (regulation and development) act. Mineral markets, Imposed and the mineral set of the market set o

rt-Exportpolicies and International Trade. Rawmaterials grade control aspects in mines.

UNITIII

Mineral economics concepts and theories. Mineral sande conomic development, mineral abun

dance. Specifications for important minerals for industrial use.India's status in mineralproduction.patternsofmineralconsumptionandsubstitution.Conservationofmineral resources– scopeand limitations.

UNITIV

Classification, origin, occurrence and distribution of coal in India.Origin, occurrence and distribution of petroleum in India.Methods of coal mining. Petroleum explorationmethods, Mineralwealth of Tamil Nadu.

UNITV

Marinemineralresources-Lawsofseabed, marinemineralresources-Mineraltaxation.

	Course Outcome	РО	Correlation	PSO	Correlation	Cognitive
		Addressed	Level	Addressed	Level	Level
		PO1 to	L/M/H	PSO1 to	L/ M/ H	K ₁ to K ₆
		PO8		PSO8		
CO1	Remember the basic principles	PO1	Н	PSO1,	Н	K1
	of mineralogy			PSO2		
602	Understand the mineral types	PO2,	Н	PSO3	Н	K2
CO2	and classification					
CO3	Apply the methods to explore	PO3, PO6,	М	PSO4,	М	КЗ
LUS	minerals					
604	Analyse the mineral policies in	PO4, PO5	М	PSO5,	М	К4
CO4	India					
COF	Evaluate potential mineral fuels	PO7, PO8	Н	PSO6,	Н	K5
CO5	in India					
	Create the mineralogical map of	PO3, PO8	Н	PSO8	Н	К6
CO6	the regions					

Mapping of Cos to POs and PSOs

(L – Low, M – Medium, H – High; K_1 – Remember, K_2 – Understand, K_3 – Apply, K_4 – Analyze, K_5 –Evaluate, K_6 – Create)

- 1 Bateman.A.M.Economicmineraldeposits, John Wiley&Sons
- 2 Krishnaswamy.S.1972.India's Mineral Resources, Oxford and IBHPublishers New Delh i
- 3 GokhaleandRaoOredepositsofIndia,Thompson press,NewDelhi.
- 4 Sinha,R.K.,sharma,N.L.,1976-Mineraleconomics.second edition ,oxford&ibh publicationco.NewDelhi,368pp.
- 5 Krishnaswamy, S.,-1971–Indian Mineral Resources, oxford&ibh publishingco., New Delhi.
- 6 Arogyaswamy, R.N.P., 1973 Courses in Mining Geology, oxford and ibh publishing co., New Delhi.
- 7 KaulisKisos Chatterjee (1970), An introduction to mineral economics, Wiley

Eastern limitedPublisher,New Delhi.

- 8 SinhaR.K and SharmaN.L(1970), Mineral economics, Oxford and IBH publishing co.,
- 9 UmathyaR.M(2006), Mineral deposits in India, Datison spublisher, Nagpur.
- 10 UmeshwarPrasad(1996),Economicgeology,CBSpublishersanddistributors,NewDel hi.

IGNEOUSPETROLOGY

Course Code:

Course Objectives:

- Gain knowledge on identification, classification, origin, evolution, and processes of formation and crystallization of the igneous rocks.
- Understand the properties of various igneous rocks

Course Outcomes* (COs):

After completion of this course, students will be able to

CO1:	Remember the principles and composition of mineralogy
CO2:	Understand the Classification of rocks on the basis of origin.
CO3:	Apply the knowledge of crystallization of Magma, and explain how uni component,
	bicomponent and multi component magma gives rise to different types of rocks.
CO4:	Analysemethods to study the forms of igneous rocks and gives the classification
CO5:	Evaluate megascopic and microscopic studies of igneous rocks
CO6:	Create the basic binary diagrams of igneous magma

Course Outline:

Unit I: Contact Hours: 14 Unit II: Contact Hours: 14 Unit III:Contact Hours: 14 Unit IV:Contact Hours: 13 Unit V: Contact Hours: 13

UNITI

Introduction to Petrology - definition of rock - classification of rock - rock cycle - .PhysicalPropertiesofMagma-

CompositionofMagma:ChemicalComposition,MineralogicalComposition-

MajorTypesanditsOrigin-

Bowen'sReactionSeries:DiscontinuousReactionSeries,ContinuousReactionSeries,Importance ofBowen'sReactionSeries-Magmatic Differentiation-Assimilation.

UNITII

TexturesofIgneousRocks:Crystallinity,Granularity,ShapeoftheCrystals,MutualRelationship between Crystal and Non-Crystalline Material, Intergrowth textures, ExsolutionTextures, Miscellaneous Textures.Structures of Igneous Rocks: Vesicular and AmygdaloidalStructures,

L	Т	Ρ	С
5	0	0	4

Scoriaceous and Pumiceous Structures, Lava Tunnels, Blocky and Ropy Lava, Platy and Sheet Structure, Pillow Lava, Columnar/Prismatic Structure, Lava Flow Structure, Rift and Grain, Perlitic Structure, Rapakivi Structure, Xenoliths. Forms of Igneous Rocks:Sill, Dyke, Laccolith, Bysmalith, Lopolith, Phacolith, Chonolith, Volcanic Neck, Batholith, Stock, Boss.

UNITIII

Classification: bases of classification – megascopic classification – classification based oncolour index – based on the proportion of Alkali to plagioclase feldspars. Based on silicasaturation – based on alumina saturation. CIPW classification, Normative minerals, salic andfemicgroups.MeritsanddemeritsofCIPW classification –Tyrrelstabularclassification.

UNITIV

CrystallisationofMagma:PhaseRule:PhaseDiagram,CondensedPhaseRule-Unicomponent System:Crystallizationbehaviourof H₂O System,Crystallizationbehaviourof SiO₂ System -Binary System: Binary System with Complete Solid, Solution of Two EndMembers-Lever Rule -BinaryEutecticSystem.

UNIT V

Texture, Mineralogy, Classification, and Modes of occurrence of: Granite, Granodiorite, Syenite, Diorite, Gabbro, their hypabyssal and volcanic equivalents. Petrographic characters, origin and distribution in India :Charnockite, Pegmatites, Lamprophyres, Alkaline rocks, Dunite, Peridotite, Anorthosites and Kimberlite.

Mapping of Cos to POs and PSOs

	Course Outcome	PO Addressed	Correlation Level	PSO Addressed	Correlation Level	Cognitive Level
		PO1 to PO8	L/M/H	PSO1 to PSO8	L/ M/ H	K ₁ to K ₆
CO1	Remember the principles and composition of mineralogy	PO1	н	PSO1, PSO2	н	К1
CO2	Understand the Classification of rocks on the basis of origin.	PO2	н	PSO2, PSO4	н	K2
соз	Apply the knowledge of crystallization of Magma, and explain how uni component, bicomponent and multi component magma gives rise to different types of rocks.	PO3, PO4,	М	PSO5, PSO6	М	КЗ
CO4	Analysemethods to study the forms of igneous rocks and gives the classification	PO5, PO6	М	PSO7	М	К4
CO5	Evaluate megascopic and microscopic studies of igneous rocks	PO7, PO8	н	PSO7	н	К5

	Create the basic binary	PO8	Н	PSO8	Н	K6
CO6	diagrams of igneous magma					

(L – Low, M – Medium, H – High; K_1 – Remember, K_2 – Understand, K_3 – Apply, K_4 – Analyze, K_5 –Evaluate, K_6 – Create)

TEXTANDREFERNCEBOOKS

- 1. Tyrrell, G.W. (1963). Principles of petrology, Methunn & Co.,.
- 2. Turner, F.J. and Verhoogen, J., (1960). Igneous and Metamorphic petrology, McGraw-HillBook co.
- 3. Bowen, N.I., (1966). Evolution of Igneous Rocks, Doverpublication,
- 4. Huang, Walter, T. (1962). Petrology, McGraw HillbookCo.
- 5. Hatch, F.H., Wells, A.K. and Wells, M.K. (1949). Petrology of Igneous Rocks. Thomas Murby&Co.
- 6. Hyndmann, Donald, W.(1972). Petrology of Igneous and Metamorphic rocks,McGraw–Book Co.
- 7. Albert Johannsen, (1962), A Descriptive Petrography of the Igneous Rocks: Vol.IAlliedpacific private limited, Bombay.
- 8. AnthonyHall, (1996), Igneous Petrology, Second Edition, Longman Group Ltd., UK.Best., (1986), Igneous Petrology., CBSPublication.
- 9. Bose, M.K., (1997). IgneousPetrology., WorldPress.
- 10. McBirney, A.R., (1993), IgneousPetrology, Jones&BarletPubl.

ONLINEOPENREFERENCES

1. Introduction to

Petrology<u>https://open.umn.edu/opentextbooks/textbooks/introduction-to-</u> petrology

2. PetrologyStudyMaterial https://serc.carleton.edu/teachearth/themes/14

SEDIMENTARYANDMETAMORPHICPETROLOGY

Course Description

Course	Code:
Course	couc.

Course Objectives:

- To make students to getknowledge on the process ofsedimentation, classification, structure and texture of sedimentary rocks along with heavy mineralsprovenancestudies, petrographyofimportantsedimentaryrocks.
- ToimportknowledgeonMetamorphiczones,gradesandfacies,andtypesof metamorphism,metamorphicstructuresandtextures,petrographicidentifi cationandoriginofimportantmetamorphicrocks.

Course Outcomes* (COs):

After completion of this course, students will be able to

CO1:	Remember the principles and composition of mineralogy
CO2:	Understand the concept of sedimentary petrology
CO3:	Apply the knowledge of Sedimentary processes and Classification of sedimentary rocks.
CO4:	Analyse thedepositional sedimentary environments and Sedimentary deposits
CO5:	Evaluate megascopic and microscopic studies of sedimentary and metamorphic rocks
CO6:	Create the field configurations of metamorphic rocks

Course Outline:

Unit I: Contact Hours: 14 Unit II: Contact Hours: 14 Unit III:Contact Hours: 14 Unit IV:Contact Hours: 13 Unit V: Contact Hours: 13

UNITI

Sedimentary Petrology: Definition –Importance of Studying Sedimentary Rocks - Kinds of Sedimentary Particles: Terrigenous, Chemical, and Organic. Processes involved in the formati on of sedimentary rocks: disintegration and decomposition of rocks : transportation, deposition, burial, lithification: compaction, cementation, consolidation and diagenesis. Diagenesis: Syndiagenesis , Anadiagenesis and Epidiagenesis – effects of diagenesis.

L	Т	Ρ	С
5	0	0	4

UNITII

Sedimentary textures: Types of Texture: clastic and non-clastic, textures controlling factors-Grain Size - Particle Size Distribution.Grain Size Scale.Measuring Grain Size -GraphicalPresentation of Grain Size Data: Histogram, Frequency Curve, Frequency Cumulative Curve.Grain Size Parameters: Mode, Median, Mean, Sorting or Standard Deviation, Skewness, Kurtosis - Particle Morphology: Shape, Roundness, Sphericity, Surface texture - Packing of Grains-Components of Clastic Texture: Detrital Grains, Matrix, Cementation , Pore Space -TexturalMaturity-Textureof Non-Clastic Rocks. Sedimentary Bedding Stratification, Structures :Primary Structures: and Cross-Bedding ,GradedBedding,RippleMarks,MudCracks,RainDropImprints,SoleStructures.Secondary Structures: Chemical Structures, Organic Structures. Petrography of clastic and nonclastic rocks. Porosity and permeability of sedimentary rocks.

UNITIII

A broad classification of sedimentary rocks:residual, mechanical, chemical and organicGroups. Classification : Based on Mineralogical Composition , Chemical Composition, -SizeandShapesofGrain-ModeofOrigin-Depositionalenvironment.CommonSedimentary Rocks : Clastic Rocksand Non-clastic Rocks.Residual deposits: terra rossa ,clay,lateriteandbauxiteandsoils.Mechanicaldepositsrudaceous,arenaceousandargillaceousgroups.Heavymineralsinsandandsandstones.Adescr iptivestudyofConglomerate, Breccia,SandstonesandShales.Chemicaldepositssiliceous,carbonaceous. ferruginousandsaltdeposits.Organicdepositscalcareous,siliceous,phosphatic,ferruginous and carbonaceous deposits. A brief study of Flint, Chert, Siderite, Gypsum, RockSalt,Calicheand Guano.Importanceof heavyminerals and theirprovenancestudies.

UNITIV

Metamorphism: Definition, agents and kinds.— facies, grades and zones of metamorphism —-Factors Affecting Metamorphism: Temperature, Geothermal Gradient, Load PressureFluidPressure, Shear Stress.Products of Metamorphism: Metamorphic Minerals, Index Minerals.Metamorphic Textures and its types: Relict Texture, Typomorphictexture, Reactiontextures,Intergrowthtextures.Metamorphicstructures:FoliationandLineation,Slat y cleavage, Schistose structure, Gneissose structure, Cataclasticstructure. —anatexis andpalingenesis.

UNITV

Typesof Metamorphism: Regional Metamorphism, Burial Metamorphism, Contact Metamorphism, Cataclastic Metamorphism, Dynamothermal metamorphism and its products – Plutonic metamorphism and its products –

Metasomatism: Definition, metasomatic processes, granitisation and migmatisation. Impact M etamorphism, Hydrothermal Metamorphism: Injection metamorphism and Autometamorphi sm. Petrographic description of quartzite, slate, schist, gneiss, marble, hornfels,

migmatiteandcharnockite.

Mapping of Cos to POs and PSOs

	Course Outcome	PO Addressed	Correlation Level	PSO Addressed	Correlation Level	Cognitive Level
		PO1 to PO8	L/M/H	PSO1 to PSO8	L/ M/ H	K_1 to K_6
CO1	Remember the principles and composition of mineralogy	PO1	н	PSO1, PSO2	н	K1
CO2	Understand the concept of sedimentary petrology	PO2	н	PSO2, PSO4	н	K2
CO3	Apply the knowledge of Sedimentary processes and Classification of sedimentary rocks.	PO3, PO4,	М	PSO5, PSO6	М	K3
CO4	Analyse thedepositional sedimentary environments and Sedimentary deposits	PO5, PO6	М	PSO7	М	К4
CO5	Evaluate megascopic and microscopic studies of sedimentary and metamorphic rocks	PO7, PO8	н	PSO7	н	K5
CO6	Create the field configurations of metamorphic rocks	PO8	н	PSO8	н	K6

 $(L - Low, M - Medium, H - High; K_1 - Remember, K_2 - Understand, K_3 - Apply, K_4 - Analyze, K_5-Evaluate, K_6 - Create)$ **TEXTANDREFERNCEBOOKS**

- 1. Friedman, G. Mand Sanders, J.L., (1978). Principles of Sedimentology, John Wiley.
- 2. Davis, R.A.Jr., (1992). Depositional Systems. Prentice Hall.
- 3. Prothero, D.R. and Schwab, F., (1996). Sedimentary Geology. Freeman.
- 4. Pettijohn, F.J., Potter, P.E. and Siever, R., (1990). Sandand Sandstone. Springer Verlag.
- 5. Sengupta, S., (1997). Introduction to Sedimentology, Oxford IBH
- 6. Selley, R.C., (1976). An Introduction to Sedimentology, Academic Press, London.
- 7. Turner, F.J., (1980). MetamorphicPetrology, McGrawHill., NewYork.
- 8. William, Turnerand Gilbert., (1965). Petrography, UFS, Bombay
- 9. Yardley, B.W., (1989). An introduction to Metamorphic Petrology., LongmanNewYork.
- 10. Winkler H.G.F. (1974). Petrogenesis of Metamorphicrocks, Third Edn. SpringerVerlag.

ONLINEOPENRESOURCES

- Sedimentary Petrology study material:<u>https://serc.carleton.edu/NAGTWorkshops/sedimentary/index.html</u>
- 2. Virtual Microscope<u>https://www.virtualmicroscope.org/content/uk-virtual-microscope</u>

HYDROGEOLOGY

Course Code:

Course Objectives:

L	Т	Ρ	С
4	0	0	4

 To gain the basic knowledge in hydrological properties of rocks, verticaldistributionofgroundwater,typesofaquifers,groundwatermovement,groundwater erqualityparameters,groundwater exploration, rechargeand dischargemethods.

Course Outcomes* (COs):

After completion of this course, students will be able to

CO1:	Remember the status of groundwater in India and the world
CO2:	Understand Specific yield and specific retention and basic concepts related to fluid motion in porous media.
CO3:	Apply the methods to study Groundwater Quality and Chemistry
CO4:	Analyse the concept of aquifers and their boundaries
CO5:	Evaluate potential Groundwater exploration and hydrogeological survey.
CO6:	Create the filed report based on hydrogeological survey

Course Outline:

Unit I: Contact Hours: 12 Unit II: Contact Hours: 12 Unit III:Contact Hours: 12 Unit IV:Contact Hours: 12 Unit V: Contact Hours: 12

UNITI

Definition of hydrogeology and groundwater – Hydrological cycle -Types of groundwaterbased onorigin -Vertical distribution of groundwater – Types of water bearing formations:aquifers, aquitards, aquifuge and aquicludes - Types Aquifers: Confined, unconfined, semi-confined,andperched–

Springs:types,geologicalconditionsfavoringdevelopmentofsprings-Artesian wells.

UNITII

Rock propertiescontrolling groundwater: types of openings, porosity, specific yield, specificretention and permeability – Groundwater movement – Darcy's law and its applications –Determination of porosity and permeability in field and lab – Groundwater occurrence inigneous, sedimentary and metamorphic rocks.

UNITIII

Explorationofgroundwater:Geological,remotesensingandgeophysicalmethodselectricalresistivitymethod.Welltypes:Openwells,tubewells,jettedwells,infiltrationgalleries and collector wells.Well design and development – Fluctuations of groundwater – Groundwaterrechargemethods: natural and artificial methods.

UNITIV

Pump tests and evaluation of various aquifer parameters through pump tests – Conjunctiveandconsumptiveuseofgroundwater–

Seawaterintrusion:causes,consequencesand,preventiveandcontrolmeasures-

Groundwaterresourcesand itsqualityinTamil Nadu.

UNITV

Groundwaterqualityinvariousrocktypes–Parametersconsideredforassessinggroundwater quality, suitability for drinking and irrigation purposes – The latest drinking andirrigation water standards of WHO and BIS – Rainwater harvesting methods – Water shedmanagement.

Mapping of Cos to POs and PSOs

	Course Outcome	PO Addressed	Correlation Level	PSO Addressed	Correlation Level	Cognitive Level
		PO1 to PO8	L/M/H	PSO1 to PSO8	L/ M/ H	K ₁ to K ₆
CO1	Remember the status of groundwater in India and the world	PO1	н	PSO1, PSO2	н	K1
CO2	Understand the Understand Specific yield and specific retention and basic concepts related to fluid motion in porous media.	PO2	н	PSO2, PSO4	н	К2
CO3	Apply the methods to study Groundwater Quality and Chemistry	PO3, PO4,	М	PSO5, PSO6	М	К3
CO4	Analyse the concept of aquifers and their boundaries	PO5, PO6	м	PSO7	М	К4
CO5	Evaluate potential Groundwater exploration and hydrogeological survey.	PO7, PO8	н	PSO7	н	К5
CO6	Create the filed report based on hydrogeological survey	PO8	н	PSO8	н	К6

(L – Low, M – Medium, H – High; K_1 – Remember, K_2 – Understand, K_3 – Apply, K_4 – Analyze, K_5 –Evaluate, K_6 – Create)

- 1. Todd, D.K. (2008). Groundwater Hydrology. 5 thed. Wiley. New Delhi.
- 2. Davis, S.N.&R.J.M.DeWiest. (1966). Hydrogeology. Wiley. Delhi.
- 3. Freeze, R.A.&J.A.Cherry. (1979). Groundwater. PrenticeHall. NewYork.
- 4. Raghunath, H.M. (1988). Groundwater. EastWestPub. Delhi.
- 5. Raghunath, H.M. (1985). Hydrology. EastWestPub. Delhi.
- 6. Fetter, G.W. (1989). Applied Hydrogeology. CBS. Delhi.
- 7. Ramakrishnan, S. (2011). Ground Water. Scitech Publications. Chennai.
- 8. Garg, S.P. (1982). Groundwaterand Tube Wells. Oxford & IBH. Delhi.
- 9. Murthy, K.S. (1998). Watershed management in India, 3rd edition, Wiley Eastern Ltd.NewAgeInternationalLtd, NewDelhi, 198 p.
- 10. KevinM.(2005)HiscockHydrogeology:PrinciplesandPractice,BlackwellScienceLtd.

MAJORELECTIVE-1.1 MARINEGEOLOGY

Course Code:

Course Objectives:

L	Т	Ρ	С
4	0	0	4

- To gain knowledge on the development of ocean sciences, marine resources, basic marinesurvey equipment, ocean floor profile,
- Understand the physical and chemical properties of water, ocean depositsandtheirtypes,shorelinesand theirtypes,coastalenvironmentand coastalregulations.

Course Outcomes* (COs):

After completion of this course, students will be able to

CO1:	Remember the marine landforms
CO2:	Understand the development of landforms through Earth's external processes by various geological agents; marine processes and formation of marine landforms.
CO3:	Apply the marine survey methods to understand ocean character
CO4:	Analysethe waves, tides and tides and its impacts
CO5:	Evaluate the physical and chemical properties of marine water
CO6:	Create seafloor morphological and bathymetric mapping

Course Outline:

Unit I: Contact Hours: 12 Unit II: Contact Hours: 12 Unit III:Contact Hours: 12 Unit IV:Contact Hours: 12 Unit V: Contact Hours: 12

UNITI

Definition, nature, scope of ocean ography and its relationship with geology. Historical develop ment of ocean ography. Marine resources: Definition, types of physical resources, marine energy resources, biological resources, non-

extractive resources. Principles and application of Echosounder, Sides can sonar, Position fixing a tSea. Bottom sediments amplers.

UNITII

Physical Oceanography: Salinity, conductivity, temperature, density, light and pressure ofseawater- importance of physical characters of seawater. *Chemical Oceanography*: watermolecule, dissolving power of Seawater, composition of sea water, major and minor elementsin seawater, nutrients in the sea, dissolved gases in sea water, oxidation-reduction potentialofseawater. Relationshipbetween physicaland chemicalproperties

ofseawater.

UNITIII

Mapping the Seafloor: Modern Bathymetric Techniques, Mapping the Ocean Floor fromSpace- Provinces of the Ocean Floor: continental margins: passive and active - continentalrise-Abyssal Plains -Beaches andShoreline.

UNITIV

Waves:Definition,Partsofwaves,Typesofwaves,Classificationofwavesandwaveinteractions with the shore.*Tides*: Definition, Classification and types. *Ocean Currents*:Definitiontypesandcauses.LittoralprocessesandCoastalErosion.Typesofcoasts:ero sionalcoast, depositional coasts, drowned coast,uplifted coast.

UNITV

Introduction to the *Law of Sea* - Maritime Territory laws - Territorial Sea laws – EEZ.Introduction to *Marine Pollution - Definition, types, sources ofpollutions:sewage pollution, industrial wastage, oil pollution,* toxic pollution, coastal and deep-sea pollution, - effect ofpollutants.

	Course Outcome	PO Addressed	Correlation Level	PSO Addressed	Correlation Level	Cognitive Level
		PO1 to PO8	L/M/H	PSO1 to PSO8	L/ M/ H	K ₁ to K ₆
CO1	Remember the marine landforms c	PO1	Н	PSO1, PSO2	н	K1
CO2	Understand the development of landforms through Earth's external processes by various geological agents; marine processes and formation of marine landforms.	PO2	н	PSO2, PSO4	н	К2
СОЗ	Apply the marine survey methods to understand ocean character	PO3, PO4,	М	PSO5, PSO6	м	К3
CO4	Analysethe waves, tides and tides and its impacts	PO5, PO6	М	PSO7	м	К4
CO5	Evaluate the physical and chemical properties of marine water	PO7, PO8	н	PSO7	н	K5
CO6	Create seafloor morphological and bathymetric report	PO8	н	PSO8	н	К6

Mapping of Cos to POs and PSOs

(L – Low, M – Medium, H – High; K_1 – Remember, K_2 – Understand, K_3 – Apply, K_4 – Analyze, K_5 –Evaluate, K_6 – Create)

- 1. Anikouchine, W.A.andSternberg, R.W., (1973): The WorldOceans-AnIntroduction to Oceanography, Englewood Cliffs.
- 2. Garrison, T., (1998): Oceanography, Wadsworth Co. USA.
- 3. Gerald,S.(1980):GeneralOceanography:AnIntroduction,JohnWiley&S ons,NewYork.
- 4. King,C.A.M.,(1972):BeachesandCoasts,E.Arnold,London:King,C.A.M.,(1975):Oceanographyfor Geographers, E. Arnold,London.
- 5. Sharma, R.C. and Vatel, M., (1970): Oceanography for Geographers, Cheyt any a Publishing House, Allahabad.
- 6. Kuenen, (1950). Marine Geology. John Wileyand Sons.
- King, C.A.M (1975). Introductiontomarine GeologyandGeomorphology.EdwardArnold,London.
- 8. Radhakrishnan, V(1996). General Geology V.V.P. Publishers, Tuticorin, 1996.
- 9. Siddhartha, K. (2002). Oceanography: ABriefIntroduction, Kisalaya Public ations PvtLtd, 347p.
- 10. Shepard, F.P (1978). Geological Oceanography, Heinmann, London.

ONLINEOPENRESOURCES

Introduction to Physical Oceanography<u>https://open.umn.edu/opentextbooks/textbooks/introduction-</u> <u>to-physical-oceanography</u>

Paul Webb(2019) Introduction to Oceanography, <u>Rebus</u> <u>Communityhttps://open.umn.edu/opentextbooks/textbooks/732</u>

MAJORELECTIVE1.2 FUELGEOLOGY

Course Code:

Course Objectives:

 To gain knowledge on basicsofenergyresources,origin,occurrence,exploration techniques of petroleum and coal. This subject also imparts knowledge on various otheralternativeresources.

Course Outcomes* (COs):

After completion of this course, students will be able to

CO1:	Remember the concepts of energy mineral resources
CO2:	Understand the fundamental concepts of origin and accumulation of oil
CO3:	Apply the knowledge to identify traps and migration properties
CO4:	Analysethe hydrocarbon reservoirs based on seismic interpretation techniques;
004.	Well logging techniques
CO5:	Evaluate Physical and chemical characteristics and classification of coal; Coal reserve
CO3 .	estimation.
CO6:	Create geological and geographical distribution maps of coalfields in India.
CO0.	

f. Course Outline:

Unit I:Contact Hours: 12 Unit II: Contact Hours: 12 Unit III:Contact Hours: 12 Unit IV:Contact Hours: 12 Unit V: Contact Hours: 12

UNITI

Introduction to natural energy resources : Types of naturalenergy resources – conventionalandnon-conventionalenergyresources–

alternativeenergyresources.Scopeandapplications of Indian energy resources.Role of petroleum and coalin energy scenario.petroliferousbasins ofIndia.

UNITII

OriginofPetroleum-OccurrenceofPetroleum:surfaceandsubsurfaceoccurrences-

Migration of Oil: primary, secondary and tertiary - accumulation of Oil. Trapsandseals: structural, stratigraphicand combined.

UNITIII

Subsurfaceenvironment:subsurfacetemperature-subsurfacepressuresubsurfacefluidcharacters—subsurfacepressureand temperaturerelationships.

L	Т	Ρ	С
4	0	0	4

UNITIV

Coal- Definition and origin of Coal- Basic classification of coal- Fundamentals of CoalPetrology - Underground coal gasification. Characteristic of coal: physical and chemicalcharacteristics. Methods of coal prospecting and estimation of coal reserves. Coal productionandproblems ofIndia.

UNITV

AlternateEnergyResources:CoalBedMethane-

generationofmethaneincoalbeds.Fundamentals of coal bed methane exploration and exploitation. Oil shale , Gas shale and gashydrates.Radioactive minerals: occurrence and sources of radioactive minerals in India.Globalscenario on power generationusingnatural energyresources.

	Course Outcome	PO Addressed	Correlation Level	PSO Addressed	Correlation Level	Cognitive Level
		PO1 to PO8	L/M/H	PSO1 to PSO8	L/ M/ H	K ₁ to K ₆
CO1	Remember the energy mineral resources	PO1	н	PSO1, PSO3	н	К1
CO2	Understand the fundamental concepts of origin and accumulation of oil	PO2	н	PSO2,	Н	К2
СОЗ	Apply the knowledge to identify traps and migration properties	PO3, PO6,	М	PSO4, PSO5	м	КЗ
CO4	Analyse the hydrocarbon reservoirs based on seismic interpretation techniques; Well logging techniques	PO4, PO5	М	PSO5, PSO7	М	К4
CO5	Evaluate Physical and chemical characteristics and classification of coal; Coal reserve estimation.	PO7, PO8	н	PSO7, PSO6	Н	К5
CO6	Create geological and geographical distribution maps of coalfields in India.	PO3, PO8	н	PSO8	н	К6

Mapping of Cos to POs and PSOs

(L – Low, M – Medium, H – High; K_1 – Remember, K_2 – Understand, K_3 – Apply, K_4 – Analyze, K_5 –Evaluate, K_6 – Create)

- 1. Chandra, D., Singh, R.M., Singh, M.P. (2000) TextBook of Coal (Indian Context). Tara Printing Works, Varanasi.
- 2. Leverson, A.L (1970). Geology of Petroleum. Freemanandco.
- 3. Selley, R.C (1998). Elements of Petroleum Geology, IIE dition. Academic Press.
- 4. Stach, E. et al. (1975) Stach'stextbook of coal petrology. Berlin: Gebruder B orntraeger.
- 5. Taylor, G.H., Teichmüller, M., Davis, C. (1998) Organic Petrology: Anewha ndbookincorporating some revised parts of Stach's Textbook of Coal Petrology.
- 6. B. G. Deshpande (2019) The World of Petroleum, New Age International PrivateLimited
- BhagwanSahay(1994)
 PetroleumExplorationandExploitationPractices,AlliedPublishersPrivat e,Limited
- 8. Gokhale, K.V. and K.D. Rao, T.C., (1973). Ore deposits of India.ThomsonPressIndiaLtd.,Delhi.
- 9. Krishnaswamy, S., (1972). India's Mineral Resources, Oxford & IBHPublishingCo.,Chennai.
- 10. Bateman, A.M., (1961). Economic Mineral Deposits, Asia Publishing House

MAJOR ELECTIVE 1.3 ENVIRONMENTALGEOLOGY

Course Code:

Course Objectives:

• To assist the students in gaining an understanding of the interactionsbetweengeologic processes, ecologicalprocesses, and society.

т

0

L 4 Ρ

0

С

4

Course Outcomes* (COs):

After completion of this course, students will be able to

CO1:	Remember the fundamentals of environmental sciences
CO2:	Understand the ecological parameters and various types of pollution
CO3:	Apply the knowledge to identify Environmental Impact Assessment.
CO4:	Analysethe man-made pollution and natural pollution
CO5:	Evaluate various environmental issues by taking remedial measures
CO6:	Create and recommend measures for prevention of environmental impact

Course Outline:

Unit I: Contact Hours: 12 Unit II: Contact Hours: 12 Unit III:Contact Hours: 12 Unit IV:Contact Hours: 12 Unit V: Contact Hours: 12

UNITI

Definition of ecology and environmental geology. Different Ecosystems. Classification of Natural resources: renewable and non-renewable resources. Environmental problems due to exogenic processes: causes, hazards and remedial measures relating to landslides, floods and soilerosion. Impact of wind on environment-Global warming.

UNITII

River Flooding, and Coastal Hazards: Rivers and Flooding: Sedimentsin River- Rivervelocity, Discharge, Erosion, and Sediments deposition- Effects onLand - use Change -Channel Pattern & Floodplain Formation - River Flooding - Urbanisation& Flooding-TheNatureandExtentofFloodHazards-AdjustmentstoFloodHazards-PerceptionofFlooding.

UNITIII

Influence of endogenetic processes – Earthquake hazards- Earthquake prediction control

andwarning; Reservoir induced seismicity -origin and impact of tsunami – hazards of volcanism-Techniques of volcanic prediction and human adjustments to volcanic environments. Benefits of volcanism.

UNITIV

Man as an agent of environmental modification. Population explosion and their pressure onearth resources. Environmental degradation due to mining and mineral processing – effects

of urbanization on surface water, causes of ground water pollution. Degradation of coastal environmentand measures for coastal protection.

UNITV

Global Climate Changes : Earth's Climate and Atmosphere- The Greenhouse Effect-StudyPast Climate Change- global warming- effects climate change- Geology and EnvironmentalHealth-AirPollution:GeologicPerspective-wastemanagementandGeology-Environmentalanalysis.Preliminaryconceptsofclimatechange.SeasonsinIndia,Monsoons, El Nino and ENSO.

	Course Outcome	РО	Correlation	PSO	Correlation	Cognitive
	course outcome	Addressed	Level	Addressed	Level	Level
		PO1 to PO8	L/M/H	PSO1 to PSO8	L/ M/ H	K_1 to K_6
CO1	Remember the concept of environmental sciences	PO1	н	PSO1, PSO3	н	К1
CO2	Understand the ecological parameters and various types of pollution	PO2	н	PSO2,	н	K2
CO3	Apply the knowledge to identify Environmental Impact Assessment.	PO3, PO6,	Μ	PSO4, PSO5	м	К3
CO4	Analysethe man made pollution and natural pollution	PO4, PO5	М	PSO5, PSO7	м	К4
CO5	Evaluate various environmental issues by taking remedial measures	PO7, PO8	н	PSO7, PSO6	н	К5
CO6	Create and recommend measures for prevention of environmental impact	PO3, PO8	Н	PSO8	н	К6

Mapping of Cos to POs and PSOs

(L – Low, M – Medium, H – High; K_1 – Remember, K_2 – Understand, K_3 – Apply, K_4 – Analyze, K_5 –Evaluate, K_6 – Create)

TEXTANDREFERNCEBOOKS

- 1. DonaldR.Coates (1981) ., EnvironmentalGeology(Willey).
- 2. PeterT.Flawan (1970)., Environmental Geology, Harperand Row.
- 3. ArthurN.StrahlerandAlanH.Strahler(1973)., EnvironmentalGeoscience.
- 4. Valdiya, K.S. (1987) Environmental geology Indian Context' Tata McGraw HillNewDelhi 583p.
- 5. Keller.G.,(1979)Environmentalgeology.7th Edition.PrinticeHall.560p.
- 6. Lindgren, L(1998). Environmental geology.. Printice Hall. 511 p.
- 7. Valdiya,K.S.,(1987),EnvironmentalGeology–IndianContext.,TataMcGrawHill
- 8. Subramanian, V., (2001), Textbookinenvironmental Science, NarosaInternational.
- 9. Bell, F.G., (1999), Geological Hazards, Routledge, London.
- 10. Smith, K., (1992), Environmental Hazards, Routledge, London.

ONLINEOPENRESOURCE

1.Environmental Geology Learning Resource<u>https://serc.carleton.edu/NAGTWorkshops/env</u> <u>ironmental/index.html</u>

MAJORPRACTICAL-5 IGNEOUSPETROLOGY

Course Code:

Course Objectives:

 To understand the microscopic and megascopic characters of Igneous rocks and its identification.

Course Outcomes* (COs):

After completion of this course, students will be able to

CO1:	Remember the Recall textural and mineralogical characters of igneous rocks
CO2:	Understand and categorize igneous rocks on the basis of physical and optical properties
CO3:	Apply the knowledge to identify the rock through megascopic and microscopic characters
CO4:	Analyse the different origin of rocks.
CO5:	Evaluate various properties of rocks using simple analysis
CO6:	Create report about the rock samples identification

Course Outline:

 $\label{eq:constraint} To develops kill and abilities in the identification of rocks with their texture, mineralogy and genes$

is.

- a. Megascopicidentification of importantigneous rocks.
- b. Microscopicidentificationofrockfabrics, mineralassemblagesofigneous rocks.

Mapping of Cos to POs and PSOs

	Course Outcome	PO	Correlation	PSO	Correlation	Cognitive
	Course Outcome	Addressed	Level	Addressed	Level	Level
		PO1 to	L/M/H	PSO1 to	L/ M/ H	K ₁ to K ₆
		PO8		PSO8		
со	Remember the Recall textural and					
1	mineralogical characters of igneous	PO1	Н	PSO1,	н	K1
	rocks					
СО	Understand and categorize igneous					
2	rocks on the basis of physical and	PO2	н	PSO2,	н	K2
	optical properties					
СО	Apply the knowledge to identify the			0000		
3	rocks through megascopic and	PO4, PO6,	М	PSO3,	М	К3
	microscopic characters.			PSO4		
СО	Analysethe rocks in different		м	PSO5, PSO7	м	К4
4	formation	PO3, PO5				

L	Т	Ρ	С
0	0	2	2

СС 5	 Evaluate various features using simple analysis 	PO7, PO8	Н	PSO7, PSO6	Н	К5
СС 6	Create report about the rock samples identification	PO3, PO8	Н	PSO8	н	К6

(L – Low, M – Medium, H – High; K_1 – Remember, K_2 – Understand, K_3 – Apply, K_4 – Analyze, K_5 –Evaluate, K_6 – Create)

MAJORPRACTICAL-6 SEDIMENTARYANDMETAMORPHICPETROLOGY

Course Code:

Course Objectives:

L	Т	Ρ	С
0	0	4	2

 To gain knowledge to identify and analyses the rocks through handspecimen and thin sections.

Course Outcomes* (COs):

After completion of this course, students will be able to

CO1:	Remember the Recall textural and mineralogical characters of sedimentary and
	metamorphic rocks.
CO2:	Understand and categorize sedimentary and metamorphic rocks on the basis of physical
	and optical properties.
CO3:	Apply the knowledge to identify the rocks through megascopic and microscopic characters.
CO4:	Analyse the different origin of rocks.
CO5:	Evaluate various properties of rocks using simple analysis
CO6:	Create report about the rock samples identification

Course Outline:

Todevelopskillandabilities in the identification of rocks with their texture, mineral og

yandgenesisboth in hand specimen and thin sections.

- 1. Megascopicidentificationstudyofimportantsedimentaryandmetamorphi c rocks.
- 2. Microscopicidentificationand studyofsedimentaryand metamorphicrocks.
- grainsizeanalysis(shelveanalysis)andstatisticaltreatment:mean,median, mode,kurtosis skewness, and standard deviation.

Mapping of Cos to POs and PSOs

	Course Outcome	РО	Correlation	PSO	Correlation	Cognitive
		Addressed	Level	Addressed	Level	Level
		PO1 to PO8	L/M/H	PSO1 to	L/ M/ H	K ₁ to K ₆
				PSO8		
	Remember the Recall textural	Remember	PO1	Н	PSO1,	Н
CO1	and mineralogical characters of					
CO1	sedimentary and metamorphic					
	rocks r					
CO2	Understand and Categorize	Understand	PO2	Н	PSO2,	Н

	sedimentary and metamorphic					
	rocks on the basis of physical and					
	optical properties					
	Apply the knowledge to identify	Apply	PO4, PO6,	М	PSO3,	М
CO3	megascopic and microscopic				PSO4	
	rocks					
CO4	Analysethe rocks in different	Analyse	PO3, PO5	М	PSO5,	М
04	formation				PSO7	
CO5	Evaluate various features using	Evaluate	PO7, PO8	Н	PSO7,	Н
COS	simple analysis				PSO6	
CO6	Create report about the rock	Create	PO3, PO8	Н	PSO8	Н
00	samples identification					

(L – Low, M – Medium, H – High; K_1 – Remember, K_2 – Understand, K_3 – Apply, K_4 – Analyze, K_5 –Evaluate, K_6 – Create)

MAJORPRACTICAL-7 HYDROGEOLOGYANDELECTIVE-1

Course Code:

Course Objectives:

- To understand the rainfall data interpretation and aquifer parameter calculations
- To understand the resistivity data interpretation
- To identify the placer minerals

Course Outcomes* (COs):

After completion of this course, students will be able to

CO1:	Remember the flow equation and calculations
CO2:	Understand the rainfall analysis and data interpretation
CO3:	Apply the knowledge to petroleum and coal reserve estimation
CO4:	Analysethe seismic interpretation data and vertical profile
CO5:	Evaluate the beach profile
CO6:	Create report about the environmental issues and prepare seismic zone map

Course Outline:

HYDROGEOLOGY

- Analysisofrainfalldata
- Aquiferpropertiescalculation
- Darcy'slawcalculation
- waterbudget calculation.
- Wennerandschlumbergerresistivitydatainterpretation.

5.1. MARINEGEOLOGY

- Beachprofile surveydatacalculation andberm shapeindex.
- Placermineralidentificationusingpetrologicalmicroscope.
- Graphical representation and interpretation of bathymetric dataset.

L	Т	Ρ	С
0	0	4	2

5.2 FUELGEOLOGY

- Studyof hand specimensof Coal
- ReserveestimationofCoal andPetroleum
- Map:PreparationofpetroliferousbasinsofIndia
- Map: PreparationofCoalbasinsofIndia
- VerticalprofileofIndianOilfields
- PanelandFencediagrams

5.3 ENVIRONMENTALGEOLOGY

Map preparation:

- seismiczonationmapofIndia,
- earthquake-proneinTamilnadu,
- landslide-proneareainIndiaand
- floodproneareainIndia.

Mapping of Cos to POs and PSOs

	Course Outcome	РО	Correlation	PSO	Correlation	Cognitive
		Addressed	Level	Addressed	Level	Level
		PO1 to PO8	L/M/H	PSO1 to PSO8	L/ M/ H	K_1 to K_6
CO1	Remember the flow equation and calculations	Remember	PO1	н	PSO1,	н
CO2	Understand the rainfall analysis and data interpretation	Understand	PO2	Н	PSO2,	Н
CO3	Apply the knowledge to petroleum and coal reserve estimation	Apply	PO4, PO6,	М	PSO3, PSO4	М
CO4	Analysethe seismic interpretation data and vertical profile	Analyse	PO3, PO5	М	PSO5, PSO7	М
CO5	Evaluate the beach profile	Evaluate	PO7, PO8	Н	PSO7, PSO6	Н
CO6	Create report about the environmental issues and prepare seismic zone map	Create	PO3, PO8	Н	PSO8	Н

(L – Low, M – Medium, H – High; K_1 – Remember, K_2 – Understand, K_3 – Apply, K_4 – Analyze, K_5 –Evaluate, K_6 – Create)

ECONOMIC GEOLOGY

Course Code:

Course Objectives:

- To impart knowledge on the various processes of formation of ore and itsclassification.
- To study the coal and petroleum deposits and their distribution in India.

Course Outcomes* (COs):

After completion of this course, students will be able to

CO1:	Remember the basic mineral composition
CO2:	Understand the basic principles of economic geology and mineral economics
CO3:	Apply the ore processing techniques.
CO4:	Analysethe various ore minerals on the basis of their physical and chemical properties.
CO5:	Evaluate economic value of the ores
CO6:	Create report about Demand and supply of ores and Mineral conservation

Course Outline:

Unit I: Contact Hours: 14 Unit II: Contact Hours: 14 Unit III:Contact Hours: 14 Unit IV:Contact Hours: 14 Unit V: Contact Hours: 14

UNITI

Introduction to Economic Geology - Materials of mineral deposits: ore, gangue, tenor andgrade, protore. Classification of mineral deposits: Lindgren's and Bateman's classification.Controls of ore localization – structural controls, stratigraphic, physical and chemical. Briefstudyof metallogeneticepochs and provinces–geologic thermometers.

UNITII

Formationofmineraldeposits:hydrothermal,mechanicalconcentrationmineraldeposits(Plac ers), Oxidation and supergene sulphide enrichment and residual concentration deposits,Contactmetamorphism / metasomatism process.

UNITIII

Mineralogical characters, Mode of occurrence and Distribution of important ores – Iron, Copper, Lead, Zinc, Manganese, Gold, chromium and Aluminium. Radioactive

L	Т	Ρ	С
6	0	0	4

minerals, Precious and semi-precious minerals, Minerals required for refractory, cement, ceramic, paintandpigments, Insulators and fertilizers.

UNITIV

Classification, origin, occurrence and distributionand mining methods of coal in India.Origin,occurrenceanddistributionexplorationanddrillingmethods of petroleuminIndia.

UNITV

Sampling – Principles – types – collection of sample – core samples and their preservation.Methods of breaking rocks : short note on explosives. Outline of the method of metalmining.Opencast and underground mining. Alluvial mining: Principles and scope of oredressing,Physicalandchemicalpropertiesoforedressing:crushers,grinders,andclassifiers, Concentrationoforemineralsbymagneto– electrostatic andfloatationprocesses.

	Course Outcome	PO	Correlation	PSO	Correlation	Cognitive
		Addressed	Level	Addressed	Level	Level
		PO1 to PO8	L/M/H	PSO1 to PSO8	L/ M/ H	K_1 to K_6
CO1	Remember the basic mineral composition	PO1	н	PSO1, PSO2	н	К1
CO2	Understand the basic principles of economic geology and mineral economics	PO1,PO2	н	PSO3	н	K2
CO3	Apply the ore processing techniques.	PO3, PO6	М	PSO4, PSO6	М	К3
CO4	Analysethe various ore minerals on the basis of their physical and chemical properties.	PO4, PO5	М	PSO5, PSO7	М	К4
CO5	Evaluate economic value of the ores	PO7, PO8	Н	PSO7, PSO6	Н	K5
CO6	Create report about Demand and supply of ores and Mineral conservation	PO3, PO8	Н	PSO8	Н	К6

Mapping of Cos to POs and PSOs

(L – Low, M – Medium, H – High; K_1 – Remember, K_2 – Understand, K_3 – Apply, K_4 – Analyze, K_5 –Evaluate, K_6 – Create)

TEXTANDREFERNCEBOOKS

- 1. Krishnaswamy.S. 1972. India's Mineral Resources, Oxford and IBH, Publishers, NewDelhi.
- 2. Gokhale.K.V.K.and Rao. T.K. 1972. Ore deposits of India, Thomson press, NewDelhi.
- 3. Umeshwar Prasad, 1996, Economicgeology, CBSPublishers and distributors, New Delhi-
- 4. EdwardR. andAtkinsanK.1986. OredepositGeology, ChapmonandHall,1.
- 5. Deb.S.1980.Industrialmineralsandrocksof India.Alliedpublisher.Pvt.Ltd.
- 6. Evans, A.M., 1993, OreGeologyandIndustrial Minerals, Blackwell
- 7. Torling, D.H., 1981, Economic Geology and Geotectonics., Blackwell SciPubl.
- 8. Barnes, H.L., 1979, Geochemistry of Hydrothermal Ore Deposits., John Wiley.
- 9. Arogyaswamy, R.P.N., 1996, Courses in Mining Geology, IVEd., Oxford IBH.
- 10. Bateman.A.M.1961. Economic mineraldeposits, John Wiley&Sons.

GEOPHYSICSANDGEOCHEMISTRY

Course Code:

Course Objectives:

- To understand the principles and their significance of geophysics.
- The studentswill acquire skills to use electrical and seismic methods of exploration and data interpretation.
- Inaddition,

Geochemistryfocusesonthechemistryofthenaturalworldandthechemicalevolutiono fthe Earth overgeologicaltime.

Course Outcomes* (COs):

After completion of this course, students will be able to

CO1:	Remember the fundamental concepts associated with gravity, magnetism, electricity and
	wave motion
CO2:	Understand the principles of geophysics and geochemistry
CO3:	Apply the geophysical concepts in prospecting of economically important deposits.
CO4:	Analysethe various ore minerals on the basis of their physical and chemical properties.
CO5:	Evaluate geophysical and geochemical character of rocks.
CO6:	Create geophysical and geochemical character map of the region

Course Outline:

Unit I: Contact Hours: 14 Unit II: Contact Hours: 14 Unit III:Contact Hours: 14 Unit IV:Contact Hours: 14 Unit V: Contact Hours: 14

UNITI

Interrelationship between geology and geophysics-Role of geological and geophysical data inexploration of earth resources. Regional geophysics, oil and gas geophysics, ore geophysics, groundwater geophysics, engineering geophysics. Different types of geophysical methods -gravity, magnetic, electrical and seismic.

UNITII

Electrical Methods: Electrical properties of rocks, Flow of current through ground surface, apparent resistivity, Electrode arrangements of Wenner and schlumberger methods. Vertical Electrical Sounding-

 $\label{eq:qualitative} qualitative and quantitative interpretation of VES curves for ground water exploration.$

L	Т	Ρ	С
6	0	0	4

UNITIII

Seismic Methods: Basic principles, types of seismic waves and their propagation characters, Seismic velocities in Earth's materials. Refraction and reflection seismic methods:

Basicprincipal, field procedure, data collection and interpretation. Gravity Methods: Basicprinci ples, Data collection and interpretation.

UNITIV

Aims and scope of Geochemistry - Concepts of geochemistry- Stellar evolution and origin of elements -properties of elements - abundances of elements and Oddo-Harkin's Law, Theperiodic table. Basic concepts and speciation in solutions, Eh, pH relations - Elements of marine chemistry- Mineral reactions- diagenesis and hydrothermal reactions. Geochemicalstructureandcomposition of the earth.

UNITV

Meteorites, Chondrites and chonurite. Geochemical classification of elements. Distribution of elements in the geosphere. Geochemical affinity. Geochemical Properties of elements:volatiles,semi-

volatiles, alkalis, alkalinee arths, REE, HFS, Transition metals and noble

metalsandTraceelements.RadioactiveandStableIsotopesanditsapplicationingeoscience - lithogeochemicalandhydrogeochemicalmethods.

	Course Outcome	PO	Correlation	PSO	Correlation	Cognitive
	Course Outcome	Addressed	Level	Addressed	Level	Level
		PO1 to PO8	L/M/H	PSO1 to PSO8	L/ M/ H	K_1 to K_6
CO1	Remember the fundamental concepts associated with gravity, magnetism, electricity and wave motion	PO1	н	PSO1, PSO2	н	K1
CO2	Understand the principles of geophysics and geochemistry	PO1,PO2	н	PSO3	н	К2
СО3	Apply the geophysical concepts in prospecting of economically important deposits.	PO3, PO5	М	PSO4, PSO6	М	КЗ
CO4	Analyzethe various ore minerals on the basis of their physical and chemical properties.	PO4, PO6	М	PSO5, PSO7	Μ	К4
CO5	Evaluate geophysical and geochemical character of rocks.	PO7, PO8	н	PSO7, PSO6	н	К5
CO6	Create geophysical and geochemical character map of the region	PO3, PO8	Н	PSO8	Н	К6

Mapping of Cos to POs and PSOs

(L – Low, M – Medium, H – High; K₁ – Remember, K₂ – Understand, K₃ – Apply, K₄ –

Analyze, K₅–Evaluate, K₆– Create)

TEXTANDREFERNCEBOOKS

- 1. RamachandraRao, M.B., Prasaranga, 1975. Outlines of Geophysical Prospecting Amanual forgeologists by University of Mysore, Mysore.
- 2. BhimasarikaramV.L.S.1990.ExplorationGeophysics-AnOutlineby.,AssociationofExploration Geophysicists, OsmaniaUniversity,Hyderabad.
- 3. Dobrin, 1984. An introduction to Geophysical Prospecting by, M.B.McGraw Hill, New Delhi.
- 4. TelfordW.M.GeldartL.P.,Sheriff,R.E.andKeysD.A.1976,AppliedGeophysics.OxfordandI BH PublishingCo.Pvt.,Ltd. New Delhi,
- 5. Parasnis, D.S1975. Principles of applied Geophysics, Chapman and Hall.
- 6. Mason, B. and Moore, C.B., 1991, Introduction to Geochemistry, Wiley Eastern.
- 7. Krauskopf, K.B., 1967, Introductiontogeochemistry, McGrawHill.
- 8. Faure, G., 1986, Principles of isotope Geology., John Wiley.
- 9. Hoefs, J., 1980, Stable IsotopeGeochemistry., Springer Verlag
- 10. Brounlow, A.N. 1979. Geochemistry, Prenticehall.

GEOLOGYOFTAMILNADU

Course Code:

Course Objectives:

L	Т	Ρ	С
6	0	0	4

- To give overall exposure to the understanding of the geologic, geomorphic evolution of Tamilnadu region.
- To gain knowledge on, stratigraphy, petrology, and mineral wealth of Tamilnadu.

Course Outcomes* (COs):

CO1:	Remember the principles of stratigraphy, geological time scale and elements of continents
	and oceans.
CO2:	Understand the Classify cratons, mobile belts and platform basins of India on the basis of
	lithological and stratigraphic characters.
CO3:	Apply the criteria used in developing the Precambrian Stratigraphy of Tamil Nadu
CO4:	Analysethe economic importance of stratigraphic units of Tamil Nadu
CO5:	Evaluate the various cratons, mobile belts and platform basins of Tamil Nadu
CO6:	Create map for various geological horizon of Tamil Nadu

Course Outline:

Unit I: Contact Hours: 14 Unit II: Contact Hours: 14 Unit III:Contact Hours: 14 Unit IV:Contact Hours: 14 Unit V: Contact Hours: 14

UNITI

GeneralGeologicalsettingofTamilNadu:Structure,shearzonesandtectonicssetting of Tamil Nadu. Rivers and Soil types of Tamil Nadu. The Western and Eastern GhatsofTamil Nadu and theirstructural aspects.

UNITII

Archaean and Proterozoic: sathyamangalam group- anorthosites of Sittampoondi, Kadavur and Oddanchatram, Peninsular gneissic complex, Kolar group, Khondalite group. Charnockite group: Pallavaram type area. Migmatite complex, Alkaline complexes, Alkalisyenite and carbonatite complexes, Granites of central and southern TamilNadu.

UNITIII

Palaeozoic sediments: Talchir formation of Palar basin.Mesozoic sediments – UpperGondwana rocks of Terani and Uttattur,Sivaganga formation, Sriperumputhur formation,Satyavedu formation and Avadi formation.Marine Cretaceous formations of

Trichirapalli, Virudhachalamand Pondicherrysub-basins.

UNITIV

Tertiarysediments:Niniyurformation,CuddaloreSandstone.Neyveliformation.Panamparaisandstone.Quaternarysediments:PliocenerocksofKambamvalley,Conjeevaram gravels, Pliestocene rocks along the coastal tracts ofTuticorin district andlaterite deposits of Eocene: shevroy, Kollimalai, Anaimalai, Nilgiri,PalaniandKodaikanalandMio-Plicene:Pudukkottai,RamanathapuramandCuddalore.TerisandsofRamanathapuram,TuticorinandTirunelvelidistricts.SanddunesofTamilNadu.Coromandalformationof Marakkanam.

UNITV

ResourcesofTamilnadu:limestonedepositsofTamilnadu-origin,modeofoccurrence of iron ores of Kanjamalai and Kavuthimalaichromite deposits of Sittampoondi -Magnesite deposits of Chalk hills, Graphite beds of Sivaganga, Lignite deposits of Neyveliand Jayamkondam, Beach placer deposits of Tamil Nadu coast. Occurrence and distributionofprecious and semi-precious stones ofTamil Nadu.

Mapping of Cos to POs and PSOs

	Course Outcome	PO Addressed	Correlation Level	PSO Addressed	Correlation Level	Cognitive Level
		PO1 to PO8	L/M/H	PSO1 to PSO8	L/ M/ H	K ₁ to K ₆
CO1	Remember the principles of stratigraphy, geological time scale and elements of continents and oceans.	PO1	н	PSO1, PSO2	н	K1
CO2	Understand the Classify cratons, mobile belts and platform basins of India on the basis of lithological and stratigraphic characters.	PO1,PO2	н	PSO3	н	K2
CO3	Apply the criteria used in developing the Precambrian Stratigraphy of Tamil Nadu	PO3, PO5	М	PSO4, PSO6	Μ	К3
CO4	Analyzethe economic importance of stratigraphic units of Tamil Nadu	PO4, PO6	М	PSO5, PSO7	М	К4
CO5	Evaluate the various cratons, mobile belts and platform basins of Tamil Nadu	PO7, PO8	н	PSO7,	н	К5
CO6	Create map for various geological horizon of Tamil Nadu	PO8	Н	PSO8	Н	K6

(L – Low, M – Medium, H – High; K_1 – Remember, K_2 – Understand, K_3 – Apply, K_4 – Analyze, K_5 –Evaluate, K_6 – Create)

TEXTANDREFERNCEBOOKS

- 1. Subramanian. K.S. and Selvan, T.A (2001). Geology of Tamilnadu and Pondicherry.GeologicalSocietyofIndia, Bangalore-192 p.
- 2. WadiaD.N.(1953).GeologyofIndia,Macmillianand Co.
- 3. Kumar.(1985).Fundamentalsof HistoricalGeologyand StratigraphyofIndia.
- 4. Krishnan, M.S. (1982). Geology of India and Burma, CBSPublishers, Delhi
- 5. Pascoe, E.H. (1968). A manual of the Geology of India and Burma (Vol.I-IV), Govt.OfIndia Press, Delhi.
- 6. Schoch, R.M. (1989). Stratigraphy, Principles and Methods. VanNostrand Reinhold.
- 7. Doyle, P.& Bennett, M.R. (1996). Unlocking the Stratigraphic Record. John Wiley
- 8. Ramakrishnan, M. &Vaidyanadhan, R. (2008). Geology of India Volumes 1 & 2geologicalsocietyofIndia, Bangalore.
- 9. Valdiya, K.S. (2010). The making of India, Macmillan India Pvt. Ltd.
- 10. G.T,manual(2010),ONGC

MAJOR ELECTIVE 2.1 GEOTECHNICALSTUDIES

Course Code:

Course Objectives:

L	Т	Ρ	С
4	0	0	4

- To impartbasicinformation onroleofGeologyinCivilEngineering.
- To understand the engineeringproperties of rocks and soils, geological investigation pertaining to foundation and development ofroads/highways,railways,bridges,buildings,damsites,reservoirs,tunnelsandcoast alstructures.

Course Outcomes* (COs):

After completion of this course, students will be able to

CO1:	Remember the principles of civil engineering
CO2:	Understand the concepts of engineering geology and outline the applications of geology in engineering projects
CO3:	Apply the knowledge of various engineering properties of rocks in engineering projects.
CO4:	Analysethe various engineering properties of rocks and aggregates.
CO5:	Evaluate data related to engineering classification of rocks
CO6:	Create Geotechnical order based on various case studies geological data related to site selection of engineering structure

Course Outline:

Unit I: Contact Hours: 12 Unit II: Contact Hours: 12 Unit III:Contact Hours: 12 Unit IV:Contact Hours: 12 Unit V: Contact Hours: 12

UNITI

Role of geology in Engineering - Applications of geology in civil Engineering -Variousengineering properties of rocks- compressive, tensile, shear and triaxial strength of rock.Behaviorofrockunderstress/strain.Variousbuildingstonesusedasconstruction material.

UNITII

Soil – Definition -types of soils - formation of soils - Soil size parameters for buildingconstruction – expensive soil and its problem for building construction.Dam Construction:Types of Dams, Geological factors for consideration for dams and reservoirs sites selectionprocess-Dam foundation problems -criteriafor Reservoirsiteselection.

UNITIII

Siteinvestigationtechniques:definition–Foundationtreatment-Grouting-geologicalinvestigations-

Groundwaterproblemsduringfoundation.Geotechnicalevaluationfortunnels: Definitionclassification - Methods of tunnelling and tunnel design.Geologicalinvestigationsforroad and bridgeconstruction.

UNITIV

Landslides and slope stability:causes of slides; types: creep, earth flow and subsidence - precautionary measures and mitigations of landslides.Earthquake and seismicity; seismiczonesofIndia– earthquake-proof designsforbuildings.

UNITV

Coastal erosion:types of erosion - Planning and methods of coastprotection works -Coastal protection structures –Remote sensing techniques forcoastalstudies. Applications of Geostatistics in Geotechnical studies: Graphical representation of data- Correlation – Principal componentanalysis – cluster analysis. Application of Geophysics in Engineering projects.

Mapping of Cos to POs and PSOs

	Course Outcome	PO	Correlation	PSO	Correlation	Cognitive
	Course Outcome	Addressed	Level	Addressed	Level	Level
		PO1 to PO8	L/M/H	PSO1 to PSO8	L/ M/ H	K_1 to K_6
CO1	Remember the principles of civil engineering	PO1	н	PSO1, PSO3	н	К1
CO2	Understand the concepts of engineering geology and outline the applications of geology in engineering projects	PO2	н	PSO2, PSO4	н	К2
СО3	Apply the knowledge of various engineering properties of rocks in engineering projects.	PO4, PO6,	М	PSO5, PSO6	М	К3
CO4	Analysethe various engineering properties of rocks and aggregates.	PO3, PO5	М	PSO5, PSO7	М	К4
CO5	Evaluate data related to engineering classification of rocks	PO7, PO8	Н	PSO7, PSO6	н	К5
CO6	Create Geotechnical order based on various case studies geological data related to site selection of engineering structure	PO7, PO8	н	PSO8	н	K6

(L – Low, M – Medium, H – High; K₁ – Remember, K₂ – Understand, K₃ – Apply, K₄ – Analyze,

TEXTANDREFERNCEBOOKS

- 1. Bell,F.G.(2005).FundamentalsofEngineeringGeology.B.S.Publications. Hyderabad.
- 2. Krynine, P.D.& W.R. Judd. (1956). Principles of Engineering Geology & Geotechnics. CBS. Delhi.
- 3. Legget, R.F.&A.W.Hatheway. (1988). Geology and Engineering. 3rded. McGraw Hill. New York.
- 4. Blyth,F.G.H.&M.H.De Freitas.(1984).A Geology for Engineers. 7th ed. Elsevier.NewDelhi.
- 5. ParbinSingh,B.(2005). A Textbook of Engineering and General Geology.S.K.Kataria&Sons.Delhi.
- 6. Johnson, R.B. and DeGraf, J.V. 1988. Principles of Engineering Geology, Joh nWiley & Sons, N.Y.
- 7. Goodman, R.E., 1993. Engineering Geology: Rock in Engineering constructions. JonhWiley&Sons, N.Y.
- 8. Waltham, T., 2009. Foundations of Engineering Geology (3rd Edn.) Taylor & Francis
- 9. SathyaNarayanswami, B.S., Engineeringgeology. Chaparral & co. Delhi, 2000
- 10. RoyE.Hunt(2005)EngineeringInvestigationHandbookSecondEditionTaylor&Francis,

MAJORELECTIVE-2.2NATURAL HAZARDS

Course Code:

L T P C 4 0 0 4

Course Objectives:

 The objective of this course is to understand the everyday geologichazards, their predictions and the alleviation.

Course Outcomes* (COs):

CO1:	Remember the concepts of hazards
CO2:	Understand the causes and consequences of earthquake
CO3:	Apply the knowledge for prevention techniques for natural hazards.
CO4:	Analysethe various natural hazards and its impact
CO5:	Evaluate the risk reduction techniques and methods
CO6:	Create hazard zone map

Course Outline:

Unit I: Contact Hours: 12 Unit II: Contact Hours: 12 Unit III:Contact Hours: 12 Unit IV:Contact Hours: 12 Unit V: Contact Hours: 12

UNITI

Role of geology in Engineering - Applications of geology in civil Engineering -Variousengineering properties of rocks- compressive, tensile, shear and triaxial strength of rock.Behaviorofrockunderstress/strain.Variousbuildingstonesusedasconstruction material.

UNITII

Soil – Definition -types of soils - formation of soils - Soil size parameters for buildingconstruction – expensive soil and its problem for building construction.Dam Construction:Types of Dams, Geological factors for consideration for dams and reservoirs sites selectionprocess-Dam foundation problems -criteriafor Reservoirsiteselection.

UNITIII

Siteinvestigationtechniques:definition-Foundationtreatment-Grouting-

geologicalinvestigations-

Groundwaterproblemsduringfoundation.Geotechnicalevaluationfortunnels: Definitionclassification - Methods of tunnelling and tunnel design.Geologicalinvestigationsforroad and bridgeconstruction.

UNITIV

Landslides and slope stability:causes of slides; types: creep, earth flow and subsidence - precautionary measures and mitigations of landslides.Earthquake and seismicity; seismiczonesofIndia– earthquake-proof designsforbuildings.

UNITV

Statistical Analysis: Graphical representation of data- Correlation – Principal componentanalysis – cluster analysis. Coastal erosion:types of erosion - Planning and methods of coastprotection works -Coastal protection structures –Remote sensing techniques forcoastalstudies.

Mapping of Cos to POs and PSOs

	Course Outcome	РО	Correlation	PSO	Correlation	Cognitive
		Addressed	Level	Addressed	Level	Level
		PO1 to	L/M/H	PSO1 to	L/ M/ H	K ₁ to K ₆
		PO8	_,,	PSO8	_,,	
CO1	Remember the concepts of	PO1	н	PSO1,	н	К1
01	hazards	FUI	П	PSO2	П	KI
CO2	Understand the causes and	PO2	н	PSO3	н	К2
02	consequences of earthquake	FUZ		r 303		κz
	Apply the knowledge for					
CO3	prevention techniques for	PO3, PO5	М	PSO4,	М	КЗ
	natural hazards.					
CO4	Analysethe various natural		М	PSO5,	М	K A
04	hazards and its impact	PO4, PO5	IVI	PSO6	IVI	K4
CO5	Evaluate the risk reduction			PSO7,	н	ИГ
COS	techniques and methods	PO7, PO8	Н	PSO6	н	K5
CO6	Create hazard zone map	PO3, PO8	Н	PSO8	Н	K6

(L – Low, M – Medium, H – High; K_1 – Remember, K_2 – Understand, K_3 – Apply, K_4 – Analyze, K_5 –Evaluate, K_6 – Create)

TEXTANDREFERNCEBOOKS

- 1. Monroe, J.S., Wicander, R., and Hazlett, R. (2007). Physical Geology: Exploringt heEarth. Sixth Edition.
- Strahler, A. Introduction to Physical Geology. Pub. John Wiley & Sons, Inc. page 632.
- 3. Hyndman, D., and Hyndman, D. (2011). Natural Hazards and Disasters. Third Ed ition. Pages 571.

- 4. Keller, E.D. (2012). Introduction to Environmental Geology. Prentice Hall. Page 801.
- 5. Holmes, A&P.L.Duff. (1996). Principles of Physical Geology, 4th revised Edition, ELBS, Lon don
- 6. Radhakrishnan, V. (1996). General Geology, V.V.P. Publishers, Tuticorin.
- 7. Mahapatra, G.P. (1994). Physical Geology, CBSPublishers, NewDelhi.
- Porter,S.C.&B.J.Skinner. J.(1995).TheDynamicEarth,JohnWiley&Sons,NewYork.
- 9. Leet, D&Judson, S(1987). Physical Geology, McGraw Hill. New Jersey.
- 10. Patwardhan, A.M. (1999). DynamicEarthSystem, PrenticeHall, NewDelhi.

ONLINEOPENRESOURCE

Reading Bookhttps://pressbooks.bccampus.ca/readingsnh/

MAJORELECTIVE-2.3 MEDICAL GEOLOGY

Course Code:

L	Т	Ρ	С
4	0	0	4

 To understand thehealth problems caused or exacerbated by geologic materials such

asrocks, minerals, and water and geologic processes such as volcanic eruptions, earthquakes, and dust.

Course Outcomes* (COs):

After completion of this course, students will be able to

CO1:	Remember the major health issues for human
CO2:	Understand the basic concepts and development of Medical Geology
1114	Apply the knowledge on Interaction between abundances of elements and isotopes and the health of humans.
CO4:	AnalyseThe public health effects of Earth materials and geological processes
CO5:	Evaluate Geological effects on animal health and Geophagy
CO6:	Create the flowchart of the application of medical minerals and rocks

Course Outline:

Unit I: Contact Hours: 12 Unit II: Contact Hours: 12 Unit III:Contact Hours: 12 Unit IV:Contact Hours: 12 Unit V: Contact Hours: 12

UNITI

Introduction to Medical Geology: Medical Geology: Natural Distribution and Abundance of Elements, Functions of major and minor elements in human body, the functional value of Traceelements, Distribution, Uses and medicinal value of Magnesite,

Gypsum,Calcite,FossiliferousLimestone,RedOcher,Asbestos,Sulphur,Cinnabar,Orpiment,R ealgar,Ferrogenous Shale, Chalcanthite, Rock Salt, Borex, Malachite and Azurite, Salt Petre andMica,Hematite, Magnetite and Siderite

UNITII

Pathways and Exposure- Volcanic Emissions and Health, Arsenic in Groundwater and theEnvironment. WHO and BIS Standards for drinking water. Fluoride in Natural Waters, soils, sediments, plants. Fluorides and health: Bioavailability of fluoride, Dental fluorosis,

Skeletalfluorosis, Dental fluorosis in India, source, nature, cause and extent.

UNITIII

Water Hardness and Health Effects, Effect of water hardness on urinary stone formation(urolithiasis), Types of stones: Calcium oxalate, Calcium phosphate, Uric acid, Magnesiumammoniumphosphatestones,Cysteine.lodineandhealth:Theiodinecycleintheen vironment, Iodine in drinking water, Iodine in food, Iodine Deficiency Disorders (IDD),Goitrogens .The nitrogen cycle, Nitrate as fertilizers, Nitrates and health, Nitrates and cancer.Deficienciesin AgriculturalSoils andCropson theNutritionalHealth ofHumans.

UNITIV

Geomedicines, Heavy metals and health hazards Problems associated with fluoride, arsenic, as bestos, mercury, chromium, cadmium, zinc, copper and lead contamination – Alternateenergy resources –

Mineral remedies to diseases including Gem Therapy. Drugs from ocean.

UNITV

EnvironmentalToxicology,EnvironmentalEpidemiology,EnvironmentalMedicine,Environm entalPathology,SpeciationofTraceElements.TechniquesandToolsGISinHumanHealthStudie s,InvestigatingVector-BorneandZoonoticDiseaseswithRemoteSensing and GIS. Mineralogy of Bones, Inorganic and Organic Geochemistry Techniques,Histochemicaland MicroprobeAnalysis in Medical Geology.

Mapping of Cos to POs and PSOs

	Course Outcome	PO Addressed	Correlation Level	PSO Addressed	Correlation Level	Cognitive Level
		PO1 to PO8	L/M/H	PSO1 to PSO8	L/ M/ H	K ₁ to K ₆
CO1	Remember the major health issues for human	PO1	Н	PSO1,	Н	K1
CO2	Understand the basic concepts and development of Medical Geology	PO1,PO2	н	PSO2, PSO3	н	K2
соз	Apply the knowledge on Interaction between abundances of elements and isotopes and the health of humans.	PO4, PO6,	М	PSO4, PSO6	М	К3
CO4	AnalyseThe public health effects of Earth materials and geological processes	PO3, PO5	М	PSO5, PSO7	М	К4
CO5	Evaluate Geological effects on animal health and Geophagy	PO7, PO8	Н	PSO7, PSO6	Н	К5

Ī		Create the flowchart of the					
	CO6	application of medical minerals	PO3, PO8	н	PSO8	н	К6
		and rocks					

 $(L - Low, M - Medium, H - High; K_1 - Remember, K_2 - Understand, K_3 - Apply,$

 K_4 – Analyze, K_5 –Evaluate, K_6 – Create)

TEXTANDREFERNCEBOOKS

- C.B.DissanayakeandR.Chandrajith(2009). IntroductiontoMedicalGeology,Springer,London
- 2. H.Catherine, W.Skinner, Antony R.Berger (2003). Geology and Health: Closinggap, Oxfor dUniv. press, New York.
- 3. IosifF.Volfson(2010).MedicalGeology:Current StatusandPerspectives, RussianGeologicalSociety(ROSGEO)Publisher.Moscow.
- K.S.Valdiya (2004).Geology,environment,Society,Universitypress(India),Hyderabad.
- Lawrence K. Wang, Jiaping Paul Chen, Yung-Tse Hung, Nazih K. Shammas (2009).Heavy Metals in the Environment, CRS Press, Taylor & Francis Group, Boca Raton,FL
- 6. M.M. Komatica, (2004) Medical Geology, Vol.2, Effects of geological environmentonHuman health, Elsevier, U.K.
- 7. OileSelinus, B. Elsevier(2003). Essentials of Medical Geology (2005), AcademicPress.,U.K.
- 8. OileSelinus, B. Finkleman, R.B., A.Jose (2010) Medical Geology-Regionalsynthesis, Springer, London.
- 9. Scott S. Olson, (1999) International Environmental Standards Handbook , CRC Press,London.CKE
- William N.Rom, (2012). EnvironmentalPolicyandPublicHealth-AirPollution, Global Climate Change, and Wilderness, by John Wiley & Sons, Inc. Published byJosseyBassA WileyImprint.

ONLINEOPENRESOURCE

- MedicalGeologyStudyMaterial <u>https://ocw.mit.edu/courses/earth-atmospheric-and-</u> <u>planetary-sciences/12-091-medical-geology-geochemistry-an-</u> <u>exposure-january-iap-2006/lecture-notes/</u>
- Geology and Human Healthhttps://serc.carleton.edu/NAGTWorkshops/health04/inde x.html

ONLINEOPENRESOURCE

Reading Book<u>https://pressbooks.bccampus.ca/readingsnh/</u>

MAJORPRACTICAL-8 ECONOMICGEOLOGY,GEOCHEMISTRYANDGEOPHYSICS

Course Code:

Course Objectives:

- To identify the ore minerals
- To interpret the geophysical data
- To understand the groundwater chemistry

Course Outcomes* (COs):

After completion of this course, students will be able to

CO1:	Remember the mineral and rock composition
CO2:	Understand the economic and industrial minerals in hand specimens and name major
	oceanic and atmospheric current systems
CO3:	Apply the knowledge on Identify the various subsurface resources from given seismic
	profiles
CO4:	Analysethe geochemical data for the given sample
CO5:	Evaluate the occurrence of different economically important deposits
CO6:	Create geophysical and geochemical map for the given area data.

COURSE OUTLINE:

ECONOMICGEOLOGY

Identification and description of the following economic minerals:

Magnetite,Ilmenite,Hematite,Pyrite,Pyrolusite,Psilomelane,Chromite,Wulframite,Chalcop yrite, Malachite, Galena, Magnesite, Bauxite, Stibnite, Cinnabar, Gypsum, Barite,Monazite,Rutile,Sillimanite,Kyanite,Corundum,Calcite,Dolomite,Beryl,Asbestos,Orp iment. Computationoforereserves fromsamplingdata

GEOPHYSICS

Elementary analysis of electrical resistivity and Elementary analysisse is micdata calculation.

GEOCHEMISTRY

Classification of ground water and rock types based on geochemical data.Preparation

L	Т	Ρ	С
0	0	4	2

ofGeochemistyanomalymaps.

Mapping of Cos to POs and PSOs

	Course Outcome	РО	Correlation	PSO	Correlation	Cognitive
		Addressed	Level	Addressed	Level	Level
		PO1 to PO8	L/M/H	PSO1 to PSO8	L/ M/ H	K_1 to K_6
CO1	Remember the mineral and rock composition	PO1	н	PSO1,	н	K1
CO2	Understand the economic and industrial minerals in hand specimens and name major oceanic and atmospheric current systems	PO2	н	PSO2,	н	K2
CO3	Apply the knowledge on Identify the various subsurface resources from given seismic profiles	PO4, PO6,	М	PSO3, PSO4	Μ	К3
CO4	Analyzethe geochemical data for the given sample	PO3, PO5	М	PSO5, PSO7	М	K4
CO5	Evaluate the occurrence of different economically important deposits	PO7, PO8	н	PSO7, PSO6	н	К5
CO6	Create geophysical and geochemical map for the given area data.	PO3, PO8	н	PSO8	н	К6

(L – Low, M – Medium, H – High; K_1 – Remember, K_2 – Understand, K_3 – Apply, K_4 – Analyze, K_5 –Evaluate, K_6 – Create)

MAJORPRACTICAL-9 GEOLOGYOFTAMILNADUAND ELECTIVE-2

Course Code:

Course Objectives:

- To understand the Geology, stratigraphy and mineral wealth of Tamilnadu.
- To gain knowledge on engineering properties of rocks

Course Outcomes* (COs):

After completion of this course, students will be able to

CO1:	Remember the stratigraphy horizon of Tamilnadu
-COZ:	Understand the cratons, mobile belts and platform basins of India on the basis of lithological
CO3:	Apply the knowledge on various geological setting of Tamil Nadu
CO4:	Analysethe engineering properties of rocks
CO5:	Evaluate the soil erosion and rain fall data
CO6:	Create Diagrammaticrepresentationofhealthhazard in Tamil Nadu

COURSE OUTLINE:

GEOLOGYOFTAMILNADU

Problems and maps related to Geology of Tamilnadu: structure,

stratigraphyboundary, mineral wealth, rocktypes, coastal morphology.

ELECTIVE-GEOTECHINICALSTUDIES

- Calculation of compressive strength, Shearstrength and Tensile strength of rocks.
- Foundationstrengthcalculations
- Selectasuitablesitefromgeologicalandtopographicalmapsfordamandtunneland otherconstructions.

ELECTIVE -NATURALHAZARDS

MapPreparationforTamilnaduRegion:Floodhazardmapping,coastalhazards mapping,

L	Т	Ρ	С
0	0	4	2

Soil erosionmapping and land degradation mapping, Foresttype and degradation mappingand

Rainfalldataanalysis

ELECTIVE - MEDICALGEOLOGY

- Preparationoflocationmineralsusedinvariousmedicalfields.
- Preparationoffluoridecontamination ingroundwater.
- DiagrammaticrepresentationofhealthhazardinIndia
- Topreparegeochemicalanomaliesinair, soils, sediments, and water that may impact on health.

Mapping of Cos to POs and PSOs

	Course Outcome	PO Address ed	Correlati on Level	PSO Address ed	Correlati on Level	Cogniti ve Level
		PO1 to PO8	L/M/H	PSO1 to PSO8	L/ M/ H	K_1 to K_6
CO 1	Remember the stratigraphy horizon of Tamilnadu	PO1	н	PSO1,	н	K1
CO 2	Understand the cratons, mobile belts and platform basins of India on the basis of lithological	PO2	н	PSO2,	Н	К2
CO 3	Apply the knowledge on various geological setting of Tamil Nadu	PO4, PO6,	М	PSO3, PSO4	М	КЗ
CO 4	Analysethe engineering properties of rocks	РО3, РО5	М	PSO5, PSO7	М	K4
CO 5	Evaluate the soil erosion and rain fall data	РО7, РО8	н	PSO7, PSO6	Н	K5
CO 6	Create Diagrammaticrepresentationofhealt hhazard in Tamil Nadu	РО3, РО8	н	PSO8	н	K6

(L – Low, M – Medium, H – High; K_1 – Remember, K_2 – Understand, K_3 – Apply, K_4 – Analyze, K_5 –Evaluate, K_6 – Create)

MAJORPRACTICAL-10 GEOLOGICALFIELDSTUDIES ANDVIVAVOCE

L

0

Т

0

Ρ

0

С

2

Course Code:

Course Objectives:

• To get exposure to various rock types, structural features, mines and Institutes related to Geological studies.

Course Outcomes* (COs):

After completion of this course, students will be able to

CO1:	Remember standard lithological symbols and colour codes for preparation of geological
CO1.	maps
CO2:	Understand to Interpret toposheets, remote sensing and other resources for
02.	reconnaissance studies.
CO3:	Application of field equipment
CO4:	Analysedifferent types of geological data and map
CO5:	Evaluate the rock and mineral specimen in the field, identify the structural features and Measure attitude, thickness, orientations of different features observed in the field
CO6:	Create report on the field studies

- Twodaysfieldtripsto placesrelevanttolstyear&IInd yearmajor courses.
- Geologicalmappingandreportsubmissioninsecondyear(Oneweekmappingcamp)
- Field trip to geologically important places and report submission in third year(notlessthan 14days)
- Submissionofspecimenscollectedduringall field tripsatVIVA-VOCE
- VIVA-VOCEforfieldtripsduring entire programme andGeologicalmapping.

Mapping of Cos to POs and PSOs

	Course Outcome	PO	Correlation	PSO	Correlation	-
		Addressed	Level	Addressed	Level	Level
		PO1 to PO8	L/M/H	PSO1 to PSO8	L/ M/ H	K ₁ to K ₆
CO1	Remember standard lithological symbols and colour codes for preparation of geological maps	PO1	Н	PSO1,	Н	K1
CO2	Understand to Interpret toposheets, remote sensing and other resources for reconnaissance.	PO1,PO2	Н	PSO2, PSO3	Н	K2
CO3	Application of field equipment	PO4, PO4,	м	PSO5, PSO6	м	К3
CO4	Analysedifferent types of geological data and map	PO5, PO6	м	PSO4, PSO7	м	К4
CO5	Evaluate the rock and mineral specimen in the field, identify the structural features and Measure attitude, thickness, orientations of different features observed in the field	PO7, PO8	н	PSO7, PSO6	н	К5
CO6	Create report on the field studies	<i>,</i> PO8	Н	PSO8	н	K6

(L – Low, M – Medium, H – High; K₁ – Remember, K₂ – Understand, K₃ – Apply, K₄ – Analyze, K₅–Evaluate, K₆ – Create)